This is ./avrdude.info, produced by makeinfo version 4.8 from ./avrdude.texi. INFO-DIR-SECTION AVR Programming & development tools. START-INFO-DIR-ENTRY * AvrDude: (avrdude). AVR program downloader/uploader. END-INFO-DIR-ENTRY This file documents the avrdude program. For avrdude version 5.5, 29 October 2007. Copyright (C) 2003, 2005 Brian Dean Copyright (C) 2006, 2007 Jo"rg Wunsch Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.  File: avrdude.info, Node: Top, Next: Introduction, Prev: (dir), Up: (dir) This file documents the avrdude program for downloading/uploading programs to Atmel AVR microcontrollers. For avrdude version 5.5, 29 October 2007. Send comments on AVRDUDE to . Use `http://savannah.nongnu.org/bugs/?group=avrdude' to report bugs. Copyright (C) 2003,2005 Brian S. Dean Copyright (C) 2006 Jo"rg Wunsch * Menu: * Introduction:: * Command Line Options:: * Terminal Mode Operation:: * Configuration File:: * Platform Dependent Information:: * Troubleshooting::  File: avrdude.info, Node: Introduction, Next: Command Line Options, Prev: Top, Up: Top 1 Introduction ************** AVRDUDE - AVR Downloader Uploader - is a program for downloading and uploading the on-chip memories of Atmel's AVR microcontrollers. It can program the Flash and EEPROM, and where supported by the serial programming protocol, it can program fuse and lock bits. AVRDUDE also supplies a direct instruction mode allowing one to issue any programming instruction to the AVR chip regardless of whether AVRDUDE implements that specific feature of a particular chip. AVRDUDE can be used effectively via the command line to read or write all chip memory types (eeprom, flash, fuse bits, lock bits, signature bytes) or via an interactive (terminal) mode. Using AVRDUDE from the command line works well for programming the entire memory of the chip from the contents of a file, while interactive mode is useful for exploring memory contents, modifing individual bytes of eeprom, programming fuse/lock bits, etc. AVRDUDE supports the following basic programmer types: Atmel's STK500, Atmel's AVRISP and AVRISP mkII devices, Atmel's JTAG ICE (both mkI and mkII, the latter also in ISP mode), appnote avr910, appnote avr109 (including the AVR Butterfly), serial bit-bang adapters, and the PPI (parallel port interface). PPI represents a class of simple programmers where the programming lines are directly connected to the PC parallel port. Several pin configurations exist for several variations of the PPI programmers, and AVRDUDE can be be configured to work with them by either specifying the appropriate programmer on the command line or by creating a new entry in its configuration file. All that's usually required for a new entry is to tell AVRDUDE which pins to use for each programming function. A number of equally simple bit-bang programming adapters that connect to a serial port are supported as well, among them the popular Ponyprog serial adapter, and the DASA and DASA3 adapters that used to be supported by uisp(1). Note that these adapters are meant to be attached to a physical serial port. Connecting to a serial port emulated on top of USB is likely to not work at all, or to work abysmally slow. The STK500, JTAG ICE, avr910, and avr109/butterfly use the serial port to communicate with the PC. The STK500, JTAG ICE, and avr910 contain on-board logic to control the programming of the target device. The avr109 bootloader implements a protocol similar to avr910, but is actually implemented in the boot area of the target's flash ROM, as opposed to being an external device. The fundamental difference between the two types lies in the protocol used to control the programmer. The avr910 protocol is very simplistic and can easily be used as the basis for a simple, home made programer since the firmware is available online. On the other hand, the STK500 protocol is more robust and complicated and the firmware is not openly available. The JTAG ICE also uses a serial communication protocol which is similar to the STK500 firmware version 2 one. However, as the JTAG ICE is intented to allow on-chip debugging as well as memory programming, the protocol is more sophisticated. (The JTAG ICE mkII protocol can also be run on top of USB.) Only the memory programming functionality of the JTAG ICE is supported by AVRDUDE. For the JTAG ICE mkII, JTAG, debugWire and ISP mode are supported. See below for the limitations of debugWire. The AVR Dragon is supported in all modes (ISP, JTAG, HVSP, PP, debugWire). (High-voltage programming is not yet supported.) When used in JTAG and debugWire mode, the AVR Dragon behaves similar to a JTAG ICE mkII, so all device-specific comments for that device will apply as well. When used in ISP mode, the AVR Dragon behaves similar to an AVRISP mkII (or JTAG ICE mkII in ISP mode), so all device-specific comments will apply there. In particular, the Dragon starts out with a rather fast ISP clock frequency, so the `-B BITCLOCK' option might be required to achieve a stable ISP communication. The USBasp ISP and USBtinyISP adapters are also supported, provided AVRDUDE has been compiled with libusb support. They both feature simple firwmare-only USB implementations, running on an ATmega8 (or ATmega88), or ATtiny2313, respectively. * Menu: * History::  File: avrdude.info, Node: History, Prev: Introduction, Up: Introduction 1.1 History and Credits ======================= AVRDUDE was written by Brian S. Dean under the name of AVRPROG to run on the FreeBSD Operating System. Brian renamed the software to be called AVRDUDE when interest grew in a Windows port of the software so that the name did not conflict with AVRPROG.EXE which is the name of Atmel's Windows programming software. The AVRDUDE source now resides in the public CVS repository on savannah.gnu.org (`http://savannah.gnu.org/projects/avrdude/'), where it continues to be enhanced and ported to other systems. In addition to FreeBSD, AVRDUDE now runs on Linux and Windows. The developers behind the porting effort primarily were Ted Roth, Eric Weddington, and Joerg Wunsch. And in the spirit of many open source projects, this manual also draws on the work of others. The initial revision was composed of parts of the original Unix manual page written by Joerg Wunsch, the original web site documentation by Brian Dean, and from the comments describing the fields in the AVRDUDE configuration file by Brian Dean. The texi formatting was modeled after that of the Simulavr documentation by Ted Roth.  File: avrdude.info, Node: Command Line Options, Next: Terminal Mode Operation, Prev: Introduction, Up: Top 2 Command Line Options ********************** * Menu: * Option Descriptions:: * Example Command Line Invocations::  File: avrdude.info, Node: Option Descriptions, Next: Example Command Line Invocations, Prev: Command Line Options, Up: Command Line Options 2.1 Option Descriptions ======================= AVRDUDE is a command line tool, used as follows: avrdude -p partno OPTIONS ... Command line options are used to control AVRDUDE's behaviour. The following options are recognized: `-p PARTNO' This is the only mandatory option and it tells AVRDUDE what type of part (MCU) that is connected to the programmer. The PARTNO parameter is the part's id listed in the configuration file. Specify -p ? to list all parts in the configuration file. If a part is unknown to AVRDUDE, it means that there is no config file entry for that part, but it can be added to the configuration file if you have the Atmel datasheet so that you can enter the programming specifications. Currently, the following MCU types are understood: `c128' AT90CAN128 `pwm2' AT90PWM2 `pwm3' AT90PWM3 `1200' AT90S1200 `2313' AT90S2313 `2333' AT90S2333 `2343' AT90S2343 (*) `4414' AT90S4414 `4433' AT90S4433 `4434' AT90S4434 `8515' AT90S8515 `8535' AT90S8535 `m103' ATmega103 `m128' ATmega128 `m1280' ATmega1280 `m1281' ATmega1281 `m16' ATmega16 `m161' ATmega161 `m162' ATmega162 `m163' ATmega163 `m164' ATmega164 `m169' ATmega169 `m2560' ATmega2560 (**) `m2561' ATmega2561 (**) `m32' ATmega32 `m324' ATmega324 `m329' ATmega329 `m3290' ATmega3290 `m48' ATmega48 `m64' ATmega64 `m640' ATmega640 `m644' ATmega644 `m649' ATmega649 `m6490' ATmega6490 `m8' ATmega8 `m8515' ATmega8515 `m8535' ATmega8535 `m88' ATmega88 `t12' ATtiny12 `t13' ATtiny13 `t15' ATtiny15 `t2313' ATtiny2313 `t25' ATtiny25 `t26' ATtiny26 `t45' ATtiny45 `t85' ATtiny85 (*) The AT90S2323 and ATtiny22 use the same algorithm. (**) Flash addressing above 128 KB is not supported by all programming hardware. Known to work are jtag2, stk500v2, and bit-bang programmers. `-b BAUDRATE' Override the RS-232 connection baud rate specified in the respective programmer's entry of the configuration file. `-B BITCLOCK' Specify the bit clock period for the JTAG interface or the ISP clock (JTAG ICE only). The value is a floating-point number in microseconds. The default value of the JTAG ICE results in about 1 microsecond bit clock period, suitable for target MCUs running at 4 MHz clock and above. Unlike certain parameters in the STK500, the JTAG ICE resets all its parameters to default values when the programming software signs off from the ICE, so for MCUs running at lower clock speeds, this parameter must be specified on the command-line. `-c PROGRAMMER-ID' Specify the programmer to be used. AVRDUDE knows about several common programmers. Use this option to specify which one to use. The PROGRAMMER-ID parameter is the programmer's id listed in the configuration file. Specify -c ? to list all programmers in the configuration file. If you have a programmer that is unknown to AVRDUDE, and the programmer is controlled via the PC parallel port, there's a good chance that it can be easily added to the configuration file without any code changes to AVRDUDE. Simply copy an existing entry and change the pin definitions to match that of the unknown programmer. Currently, the following programmer ids are understood and supported: `abcmini' ABCmini Board, aka Dick Smith HOTCHIP `alf' Nightshade ALF-PgmAVR, `http://nightshade.homeip.net/' `atisp' AT-ISP V1.1 programming cable for AVR-SDK1 from, `http://micro-research.co.th/' `avr109' Atmel AppNote AVR109 Boot Loader `avr910' Atmel Low Cost Serial Programmer `avr911' Atmel AppNote AVR911 AVROSP (an alias for avr109) `avrisp' Atmel AVR ISP (an alias for stk500) `avrisp2' Atmel AVR ISP mkII (alias for stk500v2) `avrispmkII' Atmel AVR ISP mkII (alias for stk500v2) `avrispv2' Atmel AVR ISP, running a version 2.x firmware (an alias for stk500v2) `bascom' Bascom SAMPLE programming cable `blaster' Altera ByteBlaster `bsd' Brian Dean's Programmer, `http://www.bsdhome.com/avrdude/' `butterfly' Atmel Butterfly Development Board `c2n232i' C2N232I, reset=dtr sck=!rts mosi=!txd miso=!cts, `http://www.ktverkko.fi/~msmakela/8bit/c2n232/hardware/index.en.html' `dapa' Direct AVR Parallel Access cable `dasa' serial port banging, reset=rts sck=dtr mosi=txd miso=cts `dasa3' serial port banging, reset=!dtr sck=rts mosi=txd miso=cts `dragon_dw' AVR Dragon in debugWire mode `dragon_hvsp' AVR Dragon in high-voltage serial programming mode `dragon_isp' AVR Dragon in ISP mode `dragon_jtag' AVR Dragon in JTAG mode `dragon_pp' AVR Dragon in (high-voltage) parallel programming mode `dt006' Dontronics DT006 `ere-isp-avr' ERE ISP-AVR, `http://www.ere.co.th/download/sch050713.pdf' `frank-stk200' Frank's STK200 clone, `http://electropol.free.fr/spip/spip.php?article15' `futurlec' Futurlec.com programming cable `jtag1' Atmel JTAG ICE mkI, running at 115200 Bd `jtag1slow' Atmel JTAG ICE mkI, running at 19200 Bd `jtag2slow' Atmel JTAG ICE mkII (default speed 19200 Bd) `jtag2' Atmel JTAG ICE mkII, running at 115200 Bd `jtag2fast' Atmel JTAG ICE mkII, running at 115200 Bd `jtag2isp' Atmel JTAG ICE mkII in ISP mode. `jtag2dw' Atmel JTAG ICE mkII in debugWire mode. `jtagmkI' Atmel JTAG ICE mkI, running at 115200 Bd `jtagmkII' Atmel JTAG ICE mkII (default speed 19200 Bd) `pavr' Jason Kyle's pAVR Serial Programmer `picoweb' Picoweb Programming Cable, `http://www.picoweb.net/' `pony-stk200' Pony Prog STK200 `ponyser' design ponyprog serial, reset=!txd sck=rts mosi=dtr miso=cts `siprog' Lancos SI-Prog, `http://www.lancos.com/siprogsch.html' `sp12' Steve Bolt's Programmer `stk200' STK200 `stk500' Atmel STK500, probing for either version 1.x or 2.x firmware `stk500hvsp' Atmel STK500 in high-voltage serial programming mode(version 2.x firmware only) `stk500pp' Atmel STK500 in parallel programming mode (version 2.xfirmware only) `stk500v1' Atmel STK500, running a version 1.x firmware `stk500v2' Atmel STK500, running a version 2.x firmware `usbasp' USBasp, `http://www.fischl.de/usbasp/' `usbtiny' USBtiny simple USB programmer, `http://www.ladyada.net/make/usbtinyisp/' `xil' Xilinx JTAG cable `-C CONFIG-FILE' Use the specified config file for configuration data. This file contains all programmer and part definitions that AVRDUDE knows about. If you have a programmer or part that AVRDUDE does not know about, you can add it to the config file (be sure and submit a patch back to the author so that it can be incorporated for the next version). If not specified, AVRDUDE reads the configuration file from /usr/local/etc/avrdude.conf (FreeBSD and Linux). See Appendix A for the method of searching for the configuration file for Windows. `-D' Disable auto erase for flash. When the -U option with flash memory is specified, avrdude will perform a chip erase before starting any of the programming operations, since it generally is a mistake to program the flash without performing an erase first. This option disables that. However, to remain backward compatible, the -i, and -m options automatically disable the auto erase feature. `-e' Causes a chip erase to be executed. This will reset the contents of the flash ROM and EEPROM to the value `0xff', and is basically a prerequisite command before the flash ROM can be reprogrammed again. The only exception would be if the new contents would exclusively cause bits to be programmed from the value `1' to `0'. Note that in order to reprogram EERPOM cells, no explicit prior chip erase is required since the MCU provides an auto-erase cycle in that case before programming the cell. `-E EXITSPEC[,...]' By default, AVRDUDE leaves the parallel port in the same state at exit as it has been found at startup. This option modifies the state of the `/RESET' and `Vcc' lines the parallel port is left at, according to the exitspec arguments provided, as follows: `reset' The `/RESET' signal will be left activated at program exit, that is it will be held low, in order to keep the MCU in reset state afterwards. Note in particular that the programming algorithm for the AT90S1200 device mandates that the `/RESET' signal is active before powering up the MCU, so in case an external power supply is used for this MCU type, a previous invocation of AVRDUDE with this option specified is one of the possible ways to guarantee this condition. `noreset' The `/RESET' line will be deactivated at program exit, thus allowing the MCU target program to run while the programming hardware remains connected. `vcc' This option will leave those parallel port pins active (i. e. high) that can be used to supply `Vcc' power to the MCU. `novcc' This option will pull the `Vcc' pins of the parallel port down at program exit. Multiple EXITSPEC arguments can be separated with commas. `-F' Normally, AVRDUDE tries to verify that the device signature read from the part is reasonable before continuing. Since it can happen from time to time that a device has a broken (erased or overwritten) device signature but is otherwise operating normally, this options is provided to override the check. `-i DELAY' For bitbang-type programmers, delay for approximately DELAY microseconds between each bit state change. If the host system is very fast, or the target runs off a slow clock (like a 32 kHz crystal, or the 128 kHz internal RC oscillator), this can become necessary to satisfy the requirement that the ISP clock frequency must not be higher than 1/4 of the CPU clock frequency. This is implemented as a spin-loop delay to allow even for very short delays. On Unix-style operating systems, the spin loop is initially calibrated against a system timer, so the number of microseconds might be rather realistic, assuming a constant system load while AVRDUDE is running. On Win32 operating systems, a preconfigured number of cycles per microsecond is assumed that might be off a bit for very fast or very slow machines. `-n' No-write - disables actually writing data to the MCU (useful for debugging AVRDUDE). `-O' Perform a RC oscillator run-time calibration according to Atmel application note AVR053. This is only supported on the STK500v2, AVRISP mkII, and JTAG ICE mkII hardware. Note that the result will be stored in the EEPROM cell at address 0. `-P PORT' Use port to identify the device to which the programmer is attached. Normally, the default parallel port is used, but if the programmer type normally connects to the serial port, the default serial port will be used. See Appendix A, Platform Dependent Information, to find out the default port names for your platform. If you need to use a different parallel or serial port, use this option to specify the alternate port name. For the JTAG ICE mkII, if AVRDUDE has been built with libusb support, PORT may alternatively be specified as `usb'[:SERIALNO]. In that case, the JTAG ICE mkII will be looked up on USB. If SERIALNO is also specified, it will be matched against the serial number read from any JTAG ICE mkII found on USB. The match is done after stripping any existing colons from the given serial number, and right-to-left, so only the least significant bytes from the serial number need to be given. For a trick how to find out the serial numbers of all JTAG ICEs attached to USB, see *Note Example Command Line Invocations::. As the AVRISP mkII device can only be talked to over USB, the very same method of specifying the port is required there. For the USB programmer "AVR-Doper" running in HID mode, the port must be specified as AVRDOPER. Libusb support is required on Unix but not on Windows. For more information about AVR-Doper see `http://www.obdev.at/avrusb/avrdoper.html'. For programmers that attach to a serial port using some kind of higher level protocol (as opposed to bit-bang style programmers), PORT can be specified as `net':HOST:PORT. In this case, instead of trying to open a local device, a TCP network connection to (TCP) PORT on HOST is established. The remote endpoint is assumed to be a terminal or console server that connects the network stream to a local serial port where the actual programmer has been attached to. The port is assumed to be properly configured, for example using a transparent 8-bit data connection without parity at 115200 Baud for a STK500. _This feature is currently not implemented for Win32 systems._ `-q' Disable (or quell) output of the progress bar while reading or writing to the device. Specify it a second time for even quieter operation. `-u' Disables the default behaviour of reading out the fuses three times before programming, then verifying at the end of programming that the fuses have not changed. If you want to change fuses you will need to specify this option, as avrdude will see the fuses have changed (even though you wanted to) and will change them back for your "saftey". This option was designed to prevent cases of fuse bits magically changing (usually called _safemode_). `-t' Tells AVRDUDE to enter the interactive "terminal" mode instead of up- or downloading files. See below for a detailed description of the terminal mode. `-U MEMTYPE:OP:FILENAME[:FORMAT]' Perform a memory operation, equivalent to specifing the `-m', `-i' or `-o', and `-f' options, except that multiple `-U' optins can be specified in order to operate on mulitple memories on the same command-line invocation. The MEMTYPE field specifies the memory type to operate on. Use the `-v' option on the command line or the `part' command from terminal mode to display all the memory types supported by a particular device. Typically, a device's memory configuration at least contains the memory types `flash' and `eeprom'. All memory types currently known are: `calibration' One or more bytes of RC oscillator calibration data. `eeprom' The EEPROM of the device. `efuse' The extended fuse byte. `flash' The flash ROM of the device. `fuse' The fuse byte in devices that have only a single fuse byte. `hfuse' The high fuse byte. `lfuse' The low fuse byte. `lock' The lock byte. `signature' The three device signature bytes (device ID). The OP field specifies what operation to perform: `r' read the specified device memory and write to the specified file `w' read the specified file and write it to the specified device memory `v' read the specified device memory and the specified file and perform a verify operation The FILENAME field indicates the name of the file to read or write. The FORMAT field is optional and contains the format of the file to read or write. Possible values are: `i' Intel Hex `s' Motorola S-record `r' raw binary; little-endian byte order, in the case of the flash ROM data `m' immediate mode; actual byte values specified on the command line, seperated by commas or spaces in place of the FILENAME field of the `-i', `-o', or `-U' options. This is useful for programming fuse bytes without having to create a single-byte file or enter terminal mode. If the number specified begins with `0x', it is treated as a hex value. If the number otherwise begins with a leading zero (`0') it is treated as octal. Otherwise, the value is treated as decimal. `a' auto detect; valid for input only, and only if the input is not provided at stdin. `d' decimal; this and the following formats are only valid on output. They generate one line of output for the respective memory section, forming a comma-separated list of the values. This can be particularly useful for subsequent processing, like for fuse bit settings. `h' hexadecimal; each value will get the string _0x_ prepended. `o' octal; each value will get a _0_ prepended unless it is less than 8 in which case it gets no prefix. `b' binary; each value will get the string _0b_ prepended. The default is to use auto detection for input files, and raw binary format for output files. Note that if FILENAME contains a colon, the FORMAT field is no longer optional since the filename part following the colon would otherwise be misinterpreted as FORMAT. As an abbreviation, the form `-U' FILENAME is equivalent to specifying `-U' _flash:w:_FILENAME_:a_. This will only work if FILENAME does not have a colon in it. `-v' Enable verbose output. `-V' Disable automatic verify check when uploading data. `-y' Tells AVRDUDE to use the last four bytes of the connected parts' EEPROM memory to track the number of times the device has been erased. When this option is used and the `-e' flag is specified to generate a chip erase, the previous counter will be saved before the chip erase, it is then incremented, and written back after the erase cycle completes. Presumably, the device would only be erased just before being programmed, and thus, this can be utilized to give an indication of how many erase-rewrite cycles the part has undergone. Since the FLASH memory can only endure a finite number of erase-rewrite cycles, one can use this option to track when a part is nearing the limit. The typical limit for Atmel AVR FLASH is 1000 cycles. Of course, if the application needs the last four bytes of EEPROM memory, this option should not be used. `-Y CYCLES' Instructs AVRDUDE to initialize the erase-rewrite cycle counter residing at the last four bytes of EEPROM memory to the specified value. If the application needs the last four bytes of EEPROM memory, this option should not be used.  File: avrdude.info, Node: Example Command Line Invocations, Prev: Option Descriptions, Up: Command Line Options 2.2 Example Command Line Invocations ==================================== Download the file `diag.hex' to the ATmega128 chip using the STK500 programmer connected to the default serial port: % avrdude -p m128 -c stk500 -e -U flash:w:diag.hex avrdude: AVR device initialized and ready to accept instructions Reading | ################################################## | 100% 0.03s avrdude: Device signature = 0x1e9702 avrdude: erasing chip avrdude: done. avrdude: performing op: 1, flash, 0, diag.hex avrdude: reading input file "diag.hex" avrdude: input file diag.hex auto detected as Intel Hex avrdude: writing flash (19278 bytes): Writing | ################################################## | 100% 7.60s avrdude: 19456 bytes of flash written avrdude: verifying flash memory against diag.hex: avrdude: load data flash data from input file diag.hex: avrdude: input file diag.hex auto detected as Intel Hex avrdude: input file diag.hex contains 19278 bytes avrdude: reading on-chip flash data: Reading | ################################################## | 100% 6.83s avrdude: verifying ... avrdude: 19278 bytes of flash verified avrdude: safemode: Fuses OK avrdude done. Thank you. % Upload the flash memory from the ATmega128 connected to the STK500 programmer and save it in raw binary format in the file named `c:/diag flash.bin': % avrdude -p m128 -c stk500 -U flash:r:"c:/diag flash.bin":r avrdude: AVR device initialized and ready to accept instructions Reading | ################################################## | 100% 0.03s avrdude: Device signature = 0x1e9702 avrdude: reading flash memory: Reading | ################################################## | 100% 46.10s avrdude: writing output file "c:/diag flash.bin" avrdude: safemode: Fuses OK avrdude done. Thank you. % Using the default programmer, download the file `diag.hex' to flash, `eeprom.hex' to EEPROM, and set the Extended, High, and Low fuse bytes to 0xff, 0x89, and 0x2e respectively: % avrdude -p m128 -u -U flash:w:diag.hex \ > -U eeprom:w:eeprom.hex \ > -U efuse:w:0xff:m \ > -U hfuse:w:0x89:m \ > -U lfuse:w:0x2e:m avrdude: AVR device initialized and ready to accept instructions Reading | ################################################## | 100% 0.03s avrdude: Device signature = 0x1e9702 avrdude: NOTE: FLASH memory has been specified, an erase cycle will be performed To disable this feature, specify the -D option. avrdude: erasing chip avrdude: reading input file "diag.hex" avrdude: input file diag.hex auto detected as Intel Hex avrdude: writing flash (19278 bytes): Writing | ################################################## | 100% 7.60s avrdude: 19456 bytes of flash written avrdude: verifying flash memory against diag.hex: avrdude: load data flash data from input file diag.hex: avrdude: input file diag.hex auto detected as Intel Hex avrdude: input file diag.hex contains 19278 bytes avrdude: reading on-chip flash data: Reading | ################################################## | 100% 6.84s avrdude: verifying ... avrdude: 19278 bytes of flash verified [ ... other memory status output skipped for brevity ... ] avrdude done. Thank you. % Connect to the JTAG ICE mkII which serial number ends up in 1C37 via USB, and enter terminal mode: % avrdude -c jtag2 -p m649 -P usb:1c:37 -t avrdude: AVR device initialized and ready to accept instructions Reading | ################################################## | 100% 0.03s avrdude: Device signature = 0x1e9603 [ ... terminal mode output skipped for brevity ... ] avrdude done. Thank you. List the serial numbers of all JTAG ICEs attached to USB. This is done by specifying an invalid serial number, and increasing the verbosity level. % avrdude -c jtag2 -p m128 -P usb:xx -v [...] Using Port : usb:xxx Using Programmer : jtag2 avrdude: usbdev_open(): Found JTAG ICE, serno: 00A000001C6B avrdude: usbdev_open(): Found JTAG ICE, serno: 00A000001C3A avrdude: usbdev_open(): Found JTAG ICE, serno: 00A000001C30 avrdude: usbdev_open(): did not find any (matching) USB device "usb:xxx"  File: avrdude.info, Node: Terminal Mode Operation, Next: Configuration File, Prev: Command Line Options, Up: Top 3 Terminal Mode Operation ************************* AVRDUDE has an interactive mode called TERMINAL MODE that is enabled by the `-t' option. This mode allows one to enter interactive commands to display and modify the various device memories, perform a chip erase, display the device signature bytes and part parameters, and to send raw programming commands. Commands and parameters may be abbreviated to their shortest unambiguous form. Terminal mode also supports a command history so that previously entered commands can be recalled and edited. * Menu: * Terminal Mode Commands:: * Terminal Mode Examples::  File: avrdude.info, Node: Terminal Mode Commands, Next: Terminal Mode Examples, Prev: Terminal Mode Operation, Up: Terminal Mode Operation 3.1 Terminal Mode Commands ========================== The following commands are implemented: `dump MEMTYPE ADDR NBYTES' Read NBYTES from the specified memory area, and display them in the usual hexadecimal and ASCII form. `dump' Continue dumping the memory contents for another NBYTES where the previous dump command left off. `write MEMTYPE ADDR BYTE1 ... BYTEN' Manually program the respective memory cells, starting at address addr, using the values BYTE1 through BYTEN. This feature is not implemented for bank-addressed memories such as the flash memory of ATMega devices. `erase' Perform a chip erase. `send B1 B2 B3 B4' Send raw instruction codes to the AVR device. If you need access to a feature of an AVR part that is not directly supported by AVRDUDE, this command allows you to use it, even though AVRDUDE does not implement the command. `sig' Display the device signature bytes. `part' Display the current part settings and parameters. Includes chip specific information including all memory types supported by the device, read/write timing, etc. `?' `help' Give a short on-line summary of the available commands. `quit' Leave terminal mode and thus AVRDUDE. In addition, the following commands are supported on the STK500 programmer: `vtarg VOLTAGE' Set the target's supply voltage to VOLTAGE Volts. `varef VOLTAGE' Set the adjustable voltage source to VOLTAGE Volts. This voltage is normally used to drive the target's _Aref_ input on the STK500. `fosc FREQ[M|K]' Set the master oscillator to FREQ Hz. An optional trailing letter M multiplies by 1E6, a trailing letter K by 1E3. `fosc off' Turn the master oscillator off. `sck PERIOD' _STK500 only:_ Set the SCK clock period to PERIOD microseconds. _JTAG ICE only:_ Set the JTAG ICE bit clock period to PERIOD microseconds. Note that unlike STK500 settings, this setting will be reverted to its default value (approximately 1 microsecond) when the programming software signs off from the JTAG ICE. This parameter can also be used on the JTAG ICE mkII to specify the ISP clock period when operating the ICE in ISP mode. `parms' _STK500 only:_ Display the current voltage and master oscillator parameters. _JTAG ICE only:_ Display the current target supply voltage and JTAG bit clock rate/period.  File: avrdude.info, Node: Terminal Mode Examples, Prev: Terminal Mode Commands, Up: Terminal Mode Operation 3.2 Terminal Mode Examples ========================== Display part parameters, modify eeprom cells, perform a chip erase: % avrdude -p m128 -c stk500 -t avrdude: AVR device initialized and ready to accept instructions avrdude: Device signature = 0x1e9702 avrdude: current erase-rewrite cycle count is 52 (if being tracked) avrdude> part >>> part AVR Part : ATMEGA128 Chip Erase delay : 9000 us PAGEL : PD7 BS2 : PA0 RESET disposition : dedicated RETRY pulse : SCK serial program mode : yes parallel program mode : yes Memory Detail : Page Polled Memory Type Paged Size Size #Pages MinW MaxW ReadBack ----------- ------ ------ ---- ------ ----- ----- --------- eeprom no 4096 8 0 9000 9000 0xff 0xff flash yes 131072 256 512 4500 9000 0xff 0x00 lfuse no 1 0 0 0 0 0x00 0x00 hfuse no 1 0 0 0 0 0x00 0x00 efuse no 1 0 0 0 0 0x00 0x00 lock no 1 0 0 0 0 0x00 0x00 calibration no 1 0 0 0 0 0x00 0x00 signature no 3 0 0 0 0 0x00 0x00 avrdude> dump eeprom 0 16 >>> dump eeprom 0 16 0000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................| avrdude> write eeprom 0 1 2 3 4 >>> write eeprom 0 1 2 3 4 avrdude> dump eeprom 0 16 >>> dump eeprom 0 16 0000 01 02 03 04 ff ff ff ff ff ff ff ff ff ff ff ff |................| avrdude> erase >>> erase avrdude: erasing chip avrdude> dump eeprom 0 16 >>> dump eeprom 0 16 0000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................| avrdude> Program the fuse bits of an ATmega128 (disable M103 compatibility, enable high speed external crystal, enable brown-out detection, slowly rising power). Note since we are working with fuse bits the -u (unsafe) option is specified, which allows you to modify the fuse bits. First display the factory defaults, then reprogram: % avrdude -p m128 -u -c stk500 -t avrdude: AVR device initialized and ready to accept instructions avrdude: Device signature = 0x1e9702 avrdude: current erase-rewrite cycle count is 52 (if being tracked) avrdude> d efuse >>> d efuse 0000 fd |. | avrdude> d hfuse >>> d hfuse 0000 99 |. | avrdude> d lfuse >>> d lfuse 0000 e1 |. | avrdude> w efuse 0 0xff >>> w efuse 0 0xff avrdude> w hfuse 0 0x89 >>> w hfuse 0 0x89 avrdude> w lfuse 0 0x2f >>> w lfuse 0 0x2f avrdude>  File: avrdude.info, Node: Configuration File, Next: Platform Dependent Information, Prev: Terminal Mode Operation, Up: Top 4 Configuration File ******************** AVRDUDE reads a configuration file upon startup which describes all of the parts and programmers that it knows about. The advantage of this is that if you have a chip that is not currently supported by AVRDUDE, you can add it to the configuration file without waiting for a new release of AVRDUDE. Likewise, if you have a parallel port programmer that is not supported by AVRDUDE, chances are good that you can copy and existing programmer definition, and with only a few changes, make your programmer work with AVRDUDE. AVRDUDE first looks for a system wide configuration file in a platform dependent location. On Unix, this is usually `/usr/local/etc/avrdude.conf', while on Windows it is usally in the same location as the executable file. The name of this file can be changed using the `-C' command line option. After the system wide configuration file is parsed, AVRDUDE looks for a per-user configuration file to augment or override the system wide defaults. On Unix, the per-user file is `.avrduderc' within the user's home directory. On Windows, this file is the `avrdude.rc' file located in the same directory as the executable. * Menu: * AVRDUDE Defaults:: * Programmer Definitions:: * Part Definitions:: * Other Notes::  File: avrdude.info, Node: AVRDUDE Defaults, Next: Programmer Definitions, Prev: Configuration File, Up: Configuration File 4.1 AVRDUDE Defaults ==================== `default_parallel = "DEFAULT-PARALLEL-DEVICE";' Assign the default parallel port device. Can be overidden using the `-P' option. `default_serial = "DEFAULT-SERIAL-DEVICE";' Assign the default serial port device. Can be overidden using the `-P' option. `default_programmer = "DEFAULT-PROGRAMMER-ID";' Assign the default programmer id. Can be overidden using the `-c' option.  File: avrdude.info, Node: Programmer Definitions, Next: Part Definitions, Prev: AVRDUDE Defaults, Up: Configuration File 4.2 Programmer Definitions ========================== The format of the programmer definition is as follows: programmer id = [, [, ] ...] ; # are quoted strings desc = ; # quoted string type = par | stk500 ; # programmer type baudrate = ; # baudrate for serial ports vcc = [, ... ] ; # pin number(s) reset = ; # pin number sck = ; # pin number mosi = ; # pin number miso = ; # pin number errled = ; # pin number rdyled = ; # pin number pgmled = ; # pin number vfyled = ; # pin number ;  File: avrdude.info, Node: Part Definitions, Next: Other Notes, Prev: Programmer Definitions, Up: Configuration File 4.3 Part Definitions ==================== part id = ; # quoted string desc = ; # quoted string devicecode = ; # numeric chip_erase_delay = ; # micro-seconds pagel = ; # pin name in hex, i.e., 0xD7 bs2 = ; # pin name in hex, i.e., 0xA0 reset = dedicated | io; retry_pulse = reset | sck; pgm_enable = ; chip_erase = ; memory paged = ; # yes / no size = ; # bytes page_size = ; # bytes num_pages = ; # numeric min_write_delay = ; # micro-seconds max_write_delay = ; # micro-seconds readback_p1 = ; # byte value readback_p2 = ; # byte value pwroff_after_write = ; # yes / no read = ; write = ; read_lo = ; read_hi = ; write_lo = ; write_hi = ; loadpage_lo = ; loadpage_hi = ; writepage = ; ; ; * Menu: * Instruction Format::  File: avrdude.info, Node: Instruction Format, Prev: Part Definitions, Up: Part Definitions 4.3.1 Instruction Format ------------------------ Instruction formats are specified as a comma seperated list of string values containing information (bit specifiers) about each of the 32 bits of the instruction. Bit specifiers may be one of the following formats: `1' The bit is always set on input as well as output `0' the bit is always clear on input as well as output `x' the bit is ignored on input and output `a' the bit is an address bit, the bit-number matches this bit specifier's position within the current instruction byte `aN' the bit is the Nth address bit, bit-number = N, i.e., `a12' is address bit 12 on input, `a0' is address bit 0. `i' the bit is an input data bit `o' the bit is an output data bit Each instruction must be composed of 32 bit specifiers. The instruction specification closely follows the instruction data provided in Atmel's data sheets for their parts. For example, the EEPROM read and write instruction for an AT90S2313 AVR part could be encoded as: read = "1 0 1 0 0 0 0 0 x x x x x x x x", "x a6 a5 a4 a3 a2 a1 a0 o o o o o o o o"; write = "1 1 0 0 0 0 0 0 x x x x x x x x", "x a6 a5 a4 a3 a2 a1 a0 i i i i i i i i";  File: avrdude.info, Node: Other Notes, Prev: Part Definitions, Up: Configuration File 4.4 Other Notes =============== * The `devicecode' parameter is the device code used by the STK500 and is obtained from the software section (`avr061.zip') of Atmel's AVR061 application note available from `http://www.atmel.com/atmel/acrobat/doc2525.pdf'. * Not all memory types will implement all instructions. * AVR Fuse bits and Lock bits are implemented as a type of memory. * Example memory types are: `flash', `eeprom', `fuse', `lfuse' (low fuse), `hfuse' (high fuse), `efuse' (extended fuse), `signature', `calibration', `lock'. * The memory type specified on the AVRDUDE command line must match one of the memory types defined for the specified chip. * The `pwroff_after_write' flag causes AVRDUDE to attempt to power the device off and back on after an unsuccessful write to the affected memory area if VCC programmer pins are defined. If VCC pins are not defined for the programmer, a message indicating that the device needs a power-cycle is printed out. This flag was added to work around a problem with the at90s4433/2333's; see the at90s4433 errata at: `http://www.atmel.com/atmel/acrobat/doc1280.pdf' * The boot loader from application note AVR109 (and thus also the AVR Butterfly) does not support writing of fuse bits. Writing lock bits is supported, but is restricted to the boot lock bits (BLBxx). These are restrictions imposed by the underlying SPM instruction that is used to program the device from inside the boot loader. Note that programming the boot lock bits can result in a "shoot-into-your-foot" scenario as the only way to unprogram these bits is a chip erase, which will also erase the boot loader code. The boot loader implements the "chip erase" function by erasing the flash pages of the application section. Reading fuse and lock bits is fully supported. Note that due to the unability to write the fuse bits, the safemode functionality does not make sense for these boot loaders.  File: avrdude.info, Node: Platform Dependent Information, Next: Troubleshooting, Prev: Configuration File, Up: Top Appendix A Platform Dependent Information ***************************************** * Menu: * Unix:: * Windows::  File: avrdude.info, Node: Unix, Next: Windows, Prev: Platform Dependent Information, Up: Platform Dependent Information A.1 Unix ======== * Menu: * Unix Installation:: * Unix Configuration Files:: * Unix Port Names:: * Unix Documentation::  File: avrdude.info, Node: Unix Installation, Next: Unix Configuration Files, Prev: Unix, Up: Unix A.1.1 Unix Installation ----------------------- To build and install from the source tarball on Unix like systems: $ gunzip -c avrdude-5.5.tar.gz | tar xf - $ cd avrdude-5.5 $ ./configure $ make $ su root -c 'make install' The default location of the install is into `/usr/local' so you will need to be sure that `/usr/local/bin' is in your `PATH' environment variable. If you do not have root access to your system, you can do the the following instead: $ gunzip -c avrdude-5.5.tar.gz | tar xf - $ cd avrdude-5.5 $ ./configure --prefix=$HOME/local $ make $ make install * Menu: * FreeBSD Installation:: * Linux Installation::  File: avrdude.info, Node: FreeBSD Installation, Next: Linux Installation, Prev: Unix Installation, Up: Unix Installation A.1.1.1 FreeBSD Installation ............................ AVRDUDE is installed via the FreeBSD Ports Tree as follows: % su - root # cd /usr/ports/devel/avrdude # make install If you wish to install from a pre-built package instead of the source, you can use the following instead: % su - root # pkg_add -r avrdude Of course, you must be connected to the Internet for these methods to work, since that is where the source as well as the pre-built package is obtained.  File: avrdude.info, Node: Linux Installation, Prev: FreeBSD Installation, Up: Unix Installation A.1.1.2 Linux Installation .......................... On rpm based linux systems (such as RedHat, SUSE, Mandrake, etc), you can build and install the rpm binaries directly from the tarball: $ su - root # rpmbuild -tb avrdude-5.5.tar.gz # rpm -Uvh /usr/src/redhat/RPMS/i386/avrdude-5.5-1.i386.rpm Note that the path to the resulting rpm package, differs from system to system. The above example is specific to RedHat.  File: avrdude.info, Node: Unix Configuration Files, Next: Unix Port Names, Prev: Unix Installation, Up: Unix A.1.2 Unix Configuration Files ------------------------------ When AVRDUDE is build using the default `--prefix' configure option, the default configuration file for a Unix system is located at `/usr/local/etc/avrdude.conf'. This can be overridden by using the `-C' command line option. Additionally, the user's home directory is searched for a file named `.avrduderc', and if found, is used to augment the system default configuration file. * Menu: * FreeBSD Configuration Files:: * Linux Configuration Files::  File: avrdude.info, Node: FreeBSD Configuration Files, Next: Linux Configuration Files, Prev: Unix Configuration Files, Up: Unix Configuration Files A.1.2.1 FreeBSD Configuration Files ................................... When AVRDUDE is installed using the FreeBSD ports system, the system configuration file is always `/usr/local/etc/avrdude.conf'.  File: avrdude.info, Node: Linux Configuration Files, Prev: FreeBSD Configuration Files, Up: Unix Configuration Files A.1.2.2 Linux Configuration Files ................................. When AVRDUDE is installed using from an rpm package, the system configuration file will be always be `/etc/avrdude.conf'.  File: avrdude.info, Node: Unix Port Names, Next: Unix Documentation, Prev: Unix Configuration Files, Up: Unix A.1.3 Unix Port Names --------------------- The parallel and serial port device file names are system specific. The following table lists the default names for a given system. *System* *Default Parallel *Default Serial Port* Port* FreeBSD `/dev/ppi0' `/dev/cuaa0' Linux `/dev/parport0' `/dev/ttyS0' Solaris `/dev/printers/0' `/dev/term/a' On FreeBSD systems, AVRDUDE uses the ppi(4) interface for accessing the parallel port and the sio(4) driver for serial port access. On Linux systems, AVRDUDE uses the ppdev interface for accessing the parallel port and the tty driver for serial port access. On Solaris systems, AVRDUDE uses the ecpp(7D) driver for accessing the parallel port and the asy(7D) driver for serial port access.  File: avrdude.info, Node: Unix Documentation, Prev: Unix Port Names, Up: Unix A.1.4 Unix Documentation ------------------------ AVRDUDE installs a manual page as well as info, HTML and PDF documentation. The manual page is installed in `/usr/local/man/man1' area, while the HTML and PDF documentation is installed in `/usr/local/share/doc/avrdude' directory. The info manual is installed in `/usr/local/info/avrdude.info'. Note that these locations can be altered by various configure options such as `--prefix'.  File: avrdude.info, Node: Windows, Prev: Unix, Up: Platform Dependent Information A.2 Windows =========== * Menu: * Windows Installation:: * Windows Configuration Files:: * Windows Port Names:: * Using the parallel port:: * Documentation:: * Credits.::  File: avrdude.info, Node: Windows Installation, Next: Windows Configuration Files, Prev: Windows, Up: Windows A.2.1 Installation ------------------ A Windows executable of avrdude is included in WinAVR which can be found at `http://sourceforge.net/projects/winavr'. WinAVR is a suite of executable, open source software development tools for the AVR for the Windows platform. To build avrdude from the source You must have Cygwin (`http://www.cygwin.com/'). To build and install from the source tarball for Windows (using Cygwin): $ set PREFIX= $ export PREFIX $ gunzip -c avrdude-5.5.tar.gz | tar xf - $ cd avrdude-5.5 $ ./configure LDFLAGS="-static" --prefix=$PREFIX --datadir=$PREFIX --sysconfdir=$PREFIX/bin --enable-versioned-doc=no $ make $ make install  File: avrdude.info, Node: Windows Configuration Files, Next: Windows Port Names, Prev: Windows Installation, Up: Windows A.2.2 Configuration Files ------------------------- * Menu: * Configuration file names:: * How AVRDUDE finds the configuration files.::  File: avrdude.info, Node: Configuration file names, Next: How AVRDUDE finds the configuration files., Prev: Windows Configuration Files, Up: Windows Configuration Files A.2.2.1 Configuration file names ................................ AVRDUDE on Windows looks for a system configuration file name of `avrdude.conf' and looks for a user override configuration file of `avrdude.rc'.  File: avrdude.info, Node: How AVRDUDE finds the configuration files., Prev: Configuration file names, Up: Windows Configuration Files A.2.2.2 How AVRDUDE finds the configuration files. .................................................. AVRDUDE on Windows has a different way of searching for the system and user configuration files. Below is the search method for locating the configuration files: 1. The directory from which the application loaded. 2. The current directory. 3. The Windows system directory. On Windows NT, the name of this directory is `SYSTEM32'. 4. Windows NT: The 16-bit Windows system directory. The name of this directory is `SYSTEM'. 5. The Windows directory. 6. The directories that are listed in the PATH environment variable.  File: avrdude.info, Node: Windows Port Names, Next: Using the parallel port, Prev: Windows Configuration Files, Up: Windows A.2.3 Port Names ---------------- * Menu: * Serial Ports:: * Parallel Ports::  File: avrdude.info, Node: Serial Ports, Next: Parallel Ports, Prev: Windows Port Names, Up: Windows Port Names A.2.3.1 Serial Ports .................... When you select a serial port (i.e. when using an STK500) use the Windows serial port device names such as: com1, com2, etc.  File: avrdude.info, Node: Parallel Ports, Prev: Serial Ports, Up: Windows Port Names A.2.3.2 Parallel Ports ...................... AVRDUDE will only accept 3 Windows parallel port names: lpt1, lpt2, or lpt3. Each of these names corresponds to a fixed parallel port base address: `lpt1' 0x378 `lpt2' 0x278 `lpt3' 0x3BC On your desktop PC, lpt1 will be the most common choice. If you are using a laptop, you might have to use lpt3 instead of lpt1. Select the name of the port the corresponds to the base address of the parallel port that you want.  File: avrdude.info, Node: Using the parallel port, Next: Documentation, Prev: Windows Port Names, Up: Windows A.2.4 Using the parallel port ----------------------------- * Menu: * Windows NT/2K/XP:: * Windows 95/98::  File: avrdude.info, Node: Windows NT/2K/XP, Next: Windows 95/98, Prev: Using the parallel port, Up: Using the parallel port A.2.4.1 Windows NT/2K/XP ........................ On Windows NT, 2000, and XP user applications cannot directly access the parallel port. However, kernel mode drivers can access the parallel port. giveio.sys is a driver that can allow user applications to set the state of the parallel port pins. Before using AVRDUDE, the giveio.sys driver must be loaded. The accompanying command-line program, loaddrv.exe, can do just that. To make things even easier there are 3 batch files that are also included: 1. install_giveio.bat Install and start the giveio driver. 2. status_giveio.bat Check on the status of the giveio driver. 3. remove_giveio.bat Stop and remove the giveio driver from memory. These 3 batch files calls the loaddrv program with various options to install, start, stop, and remove the driver. When you first execute install_giveio.bat, loaddrv.exe and giveio.sys must be in the current directory. When install_giveio.bat is executed it will copy giveio.sys from your current directory to your Windows directory. It will then load the driver from the Windows directory. This means that after the first time install_giveio is executed, you should be able to subsequently execute the batch file from any directory and have it successfully start the driver. Note that you must have administrator privilege to load the giveio driver.  File: avrdude.info, Node: Windows 95/98, Prev: Windows NT/2K/XP, Up: Using the parallel port A.2.4.2 Windows 95/98 ..................... On Windows 95 and 98 the giveio.sys driver is not needed.  File: avrdude.info, Node: Documentation, Next: Credits., Prev: Using the parallel port, Up: Windows A.2.5 Documentation ------------------- AVRDUDE installs a manual page as well as info, HTML and PDF documentation. The manual page is installed in `/usr/local/man/man1' area, while the HTML and PDF documentation is installed in `/usr/local/share/doc/avrdude' directory. The info manual is installed in `/usr/local/info/avrdude.info'. Note that these locations can be altered by various configure options such as `--prefix' and `--datadir'.  File: avrdude.info, Node: Credits., Prev: Documentation, Up: Windows A.2.6 Credits. -------------- Thanks to: * Dale Roberts for the giveio driver. * Paula Tomlinson for the loaddrv sources. * Chris Liechti for modifying loaddrv to be command line driven and for writing the batch files.  File: avrdude.info, Node: Troubleshooting, Prev: Platform Dependent Information, Up: Top Appendix B Troubleshooting ************************** In general, please report any bugs encountered via `http://savannah.nongnu.org/bugs/?group=avrdude'. * Problem: I'm using a serial programmer under Windows and get the following error: `avrdude: serial_open(): can't set attributes for device "com1"', Solution: This problem seems to appear with certain versions of Cygwin. Specifying `"/dev/com1"' instead of `"com1"' should help. * Problem: I'm using linux and my AVR910 programmer is really slow. Solution (short): `setserial PORT low_latency' Solution (long): There are two problems here. First, the system may wait some time before it passes data from the serial port to the program. Under Linux the following command works around this (you may need root privileges for this). `setserial PORT low_latency' Secondly, the serial interface chip may delay the interrupt for some time. This behaviour can be changed by setting the FIFO-threshold to one. Under Linux this can only be done by changing the kernel source in `drivers/char/serial.c'. Search the file for `UART_FCR_TRIGGER_8' and replace it with `UART_FCR_TRIGGER_1'. Note that overall performance might suffer if there is high throughput on serial lines. Also note that you are modifying the kernel at your own risk. * Problem: I'm not using linux and my AVR910 programmer is really slow. Solutions: The reasons for this are the same as above. If you know how to work around this on your OS, please let us know. * Problem: Updating the flash ROM from terminal mode does not work with the JTAG ICEs. Solution: None at this time. Currently, the JTAG ICE code cannot write to the flash ROM one byte at a time. * Problem: Page-mode programming the EEPROM (using the -U option) does not erase EEPROM cells before writing, and thus cannot overwrite any previous value != 0xff. Solution: None. This is an inherent feature of the way JTAG EEPROM programming works, and is documented that way in the Atmel AVR datasheets. In order to successfully program the EEPROM that way, a prior chip erase (with the EESAVE fuse unprogrammed) is required. This also applies to the STK500 in high-voltage programming mode. * Problem: How do I turn off the DWEN fuse? Solution: If the DWEN (debugWire enable) fuse is activated, the /RESET pin is not functional anymore, so normal ISP communication cannot be established. There are two options to deactivate that fuse again: high-voltage programming, or getting the JTAG ICE mkII talk debugWire, and prepare the target AVR to accept normal ISP communication again. The first option requires a programmer that is capable of high-voltage programming (either serial or parallel, depending on the AVR device), for example the STK500. In high-voltage programming mode, the /RESET pin is activated initially using a 12 V pulse (thus the name _high voltage_), so the target AVR can subsequently be reprogrammed, and the DWEN fuse can be cleared. Typically, this operation cannot be performed while the AVR is located in the target circuit though. The second option requires a JTAG ICE mkII that can talk the debugWire protocol. The ICE needs to be connected to the target using the JTAG-to-ISP adapter, so the JTAG ICE mkII can be used as a debugWire initiator as well as an ISP programmer. AVRDUDE will then be activated using the JTAG2ISP programmer type. The initial ISP communication attempt will fail, but AVRDUDE then tries to iniate a debugWire reset. When successful, this will leave the target AVR in a state where it can accept standard ISP communication. The ICE is then signed off (which will make it signing off from the USB as well), so AVRDUDE has to be called again afterwards. This time, standard ISP communication can work, so the DWEN fuse can be cleared. The pin mapping for the JTAG-to-ISP adapter is: *JTAG pin* *ISP pin* 1 3 2 6 3 1 4 2 6 5 9 4 * Problem: Multiple USBasp or USBtinyISP programmers connected simultaneously are not found. Solution: none at this time. The simplicity of these programmers doesn't offer a method to distinguish multiple programmers that are connected simultaneously, so effectively only one of them is supported. * Problem: I cannot do ... when the target is in debugWire mode. Solution: debugWire mode imposes several limitations. The debugWire protocol is Atmel's proprietary one-wire (plus ground) protocol to allow an in-circuit emulation of the smaller AVR devices, using the /RESET line. DebugWire mode is initiated by activating the DWEN fuse, and then power-cycling the target. While this mode is mainly intented for debugging/emulation, it also offers limited programming capabilities. Effectively, the only memory areas that can be read or programmed in this mode are flash ROM and EEPROM. It is also possible to read out the signature. All other memory areas cannot be accessed. There is no _chip erase_ functionality in debugWire mode; instead, while reprogramming the flash ROM, each flash ROM page is erased right before updating it. This is done transparently by the JTAG ICE mkII (or AVR Dragon). The only way back from debugWire mode is to initiate a special sequence of commands to the JTAG ICE mkII (or AVR Dragon), so the debugWire mode will be temporarily disabled, and the target can be accessed using normal ISP programming. This sequence is automatically initiated by using the JTAG ICE mkII or AVR Dragon in ISP mode, when they detect that ISP mode cannot be entered.  Tag Table: Node: Top1087 Node: Introduction1691 Node: History6059 Node: Command Line Options7292 Node: Option Descriptions7524 Node: Example Command Line Invocations27861 Node: Terminal Mode Operation32544 Node: Terminal Mode Commands33281 Node: Terminal Mode Examples35897 Node: Configuration File39081 Node: AVRDUDE Defaults40499 Node: Programmer Definitions41083 Node: Part Definitions42244 Node: Instruction Format44164 Node: Other Notes45551 Node: Platform Dependent Information47729 Node: Unix47967 Node: Unix Installation48217 Node: FreeBSD Installation49013 Node: Linux Installation49645 Node: Unix Configuration Files50186 Node: FreeBSD Configuration Files50820 Node: Linux Configuration Files51179 Node: Unix Port Names51494 Node: Unix Documentation52485 Node: Windows53012 Node: Windows Installation53274 Node: Windows Configuration Files54121 Node: Configuration file names54388 Node: How AVRDUDE finds the configuration files.54778 Node: Windows Port Names55568 Node: Serial Ports55780 Node: Parallel Ports56067 Node: Using the parallel port56645 Node: Windows NT/2K/XP56872 Node: Windows 95/9858378 Node: Documentation58581 Node: Credits.59137 Node: Troubleshooting59470  End Tag Table