/////////////////////////////////////////////////////////////////////////////// // static.hpp // // Copyright 2004 Eric Niebler. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_XPRESSIVE_DETAIL_STATIC_STATIC_HPP_EAN_10_04_2005 #define BOOST_XPRESSIVE_DETAIL_STATIC_STATIC_HPP_EAN_10_04_2005 // MS compatible compilers support #pragma once #if defined(_MSC_VER) && (_MSC_VER >= 1020) # pragma once #endif #include #include #include #include #include // Random thoughts: // - must support indirect repeat counts {$n,$m} // - add ws to eat whitespace (make *ws illegal) // - a{n,m} -> repeat(a) // - a{$n,$m} -> repeat(n,m)(a) // - add nil to match nothing // - instead of s1, s2, etc., how about s[1], s[2], etc.? Needlessly verbose? namespace boost { namespace xpressive { namespace detail { #ifdef BOOST_XPR_DEBUG_STACK /////////////////////////////////////////////////////////////////////////////// // top_type // template struct top_type { typedef Top type; }; /////////////////////////////////////////////////////////////////////////////// // top_type // template struct top_type > { typedef Next type; }; #endif /////////////////////////////////////////////////////////////////////////////// // stacked_xpression // template struct stacked_xpression : Next { // match // delegates to Next template bool match(state_type &state) const { return static_cast(this)-> BOOST_NESTED_TEMPLATE push_match(state); } // top_match // jump back to the xpression on top of the xpression stack, // and keep the xpression on the stack. template static bool top_match(state_type &state, xpression_base const *top) { BOOST_XPR_DEBUG_STACK_ASSERT(typeid(*top) == typeid(typename top_type::type)); return static_cast(top)-> BOOST_NESTED_TEMPLATE push_match(state); } // pop_match // jump back to the xpression on top of the xpression stack, // pop the xpression off the stack. template static bool pop_match(state_type &state, xpression_base const *top) { BOOST_XPR_DEBUG_STACK_ASSERT(typeid(*top) == typeid(typename top_type::type)); return static_cast(top)->match(state); } // skip_match // pop the xpression off the top of the stack and ignore it; call // match on next. template bool skip_match(state_type &state) const { // could be static_xpression::skip_impl or stacked_xpression::skip_impl // depending on if there is 1 or more than 1 xpression on the // xpression stack return Top::skip_impl(*static_cast(this), state); } //protected: // skip_impl // implementation of skip_match. template static bool skip_impl(That const &that, state_type &state) { return that.BOOST_NESTED_TEMPLATE push_match(state); } }; /////////////////////////////////////////////////////////////////////////////// // stacked_xpression_cast // template inline stacked_xpression const &stacked_xpression_cast(Next const &next) { // NOTE: this is a little white lie. The "next" object doesn't really have // the type to which we're casting it. It is harmless, though. We are only using // the cast to decorate the next object with type information. It is done // this way to save stack space. BOOST_MPL_ASSERT_RELATION(sizeof(stacked_xpression), ==, sizeof(Next)); return *static_cast const *>(&next); } /////////////////////////////////////////////////////////////////////////////// // static_xpression // template struct static_xpression : Matcher { Next next_; static_xpression(Matcher const &matcher = Matcher(), Next const &next = Next()) : Matcher(matcher) , next_(next) { } // match // delegates to the Matcher template bool match(state_type &state) const { return this->Matcher::match(state, this->next_); } // push_match // call match on this, but also push "Top" onto the xpression // stack so we know what we are jumping back to later. template bool push_match(state_type &state) const { return this->Matcher::match(state, stacked_xpression_cast(this->next_)); } // skip_impl // implementation of skip_match, called from stacked_xpression::skip_match template static bool skip_impl(That const &that, state_type &state) { return that.match(state); } // for linking a compiled regular xpression template void link(xpression_linker &linker) const { linker.link(*static_cast(this), &this->next_); this->next_.link(linker); } // for building a lead-follow template void peek(xpression_peeker &peeker) const { this->peek_next_(peeker.peek(*static_cast(this)), peeker); } // for getting xpression width template std::size_t get_width(state_type *state) const { // BUGBUG this gets called from the simple_repeat_matcher::match(), so this is slow. // or will the compiler be able to optimize this all away? std::size_t this_width = this->Matcher::get_width(state); if(this_width == unknown_width()) return unknown_width(); std::size_t that_width = this->next_.get_width(state); if(that_width == unknown_width()) return unknown_width(); return this_width + that_width; } private: // hide this static_xpression &operator =(static_xpression const &); template void peek_next_(mpl::true_, xpression_peeker &peeker) const { this->next_.peek(peeker); } template static void peek_next_(mpl::false_, xpression_peeker &) { // no-op } using Matcher::width; using Matcher::pure; }; // syntactic sugar so this xpression can be treated the same as // (a smart pointer to) a dynamic xpression from templates template inline static_xpression const * get_pointer(static_xpression const &xpr) { return &xpr; } /////////////////////////////////////////////////////////////////////////////// // make_static_xpression // template inline static_xpression const make_static_xpression(Matcher const &matcher) { return static_xpression(matcher); } template inline static_xpression const make_static_xpression(Matcher const &matcher, Next const &next) { return static_xpression(matcher, next); } /////////////////////////////////////////////////////////////////////////////// // no_next // struct no_next : xpression_base { template void link(xpression_linker &) const { } template void peek(xpression_peeker &peeker) const { peeker.fail(); } template static std::size_t get_width(state_type *) { return 0; } }; /////////////////////////////////////////////////////////////////////////////// // alternates_list // template struct alternates_list : Alternates { alternates_list(Alternates const &alternates) : Alternates(alternates) { } private: alternates_list &operator =(alternates_list const &); }; /////////////////////////////////////////////////////////////////////////////// // get_mark_number // inline int get_mark_number(mark_tag const &mark) { return proto::arg(mark).mark_number_; } }}} // namespace boost::xpressive::detail #endif