/* ** ClanLib SDK ** Copyright (c) 1997-2005 The ClanLib Team ** ** This software is provided 'as-is', without any express or implied ** warranty. In no event will the authors be held liable for any damages ** arising from the use of this software. ** ** Permission is granted to anyone to use this software for any purpose, ** including commercial applications, and to alter it and redistribute it ** freely, subject to the following restrictions: ** ** 1. The origin of this software must not be misrepresented; you must not ** claim that you wrote the original software. If you use this software ** in a product, an acknowledgment in the product documentation would be ** appreciated but is not required. ** 2. Altered source versions must be plainly marked as such, and must not be ** misrepresented as being the original software. ** 3. This notice may not be removed or altered from any source distribution. ** ** Note: Some of the libraries ClanLib may link to may have additional ** requirements or restrictions. ** ** File Author(s): ** ** Magnus Norddahl ** (if your name is missing here, please add it) */ //! clanCore="Math" //! header=core.h #ifndef header_point #define header_point #if _MSC_VER > 1000 #pragma once #endif #include "math.h" class CL_Pointf; //: 2D (x,y) point structure. //- !group=Core/Math! //- !header=core.h! class CL_Point { // Construction: public: //: Constructs a point. //param x: Initial x value. //param y: Initial y value. //param p: Point to use for initial values. CL_Point() { return; } CL_Point(int x, int y) : x(x), y(y) { } CL_Point(const CL_Point &p) { x = p.x; y = p.y; } explicit CL_Point(const CL_Pointf& p); // Operations: public: //: Return a rotated version of this point. //param hotspot: The point around which to rotate. //param angle: The amount of degrees to rotate by, clockwise. CL_Point rotate( const CL_Point &hotspot, float angle) const { //Move the hotspot to 0,0 CL_Point r(x - hotspot.x, y - hotspot.y); //Do some Grumbel voodoo. // Because MSVC sucks ass wrt standards compliance, it gets it own special function calls #ifdef _MSC_VER const float c = (float) sqrt((float)r.x*(float)r.x + (float)r.y*(float)r.y); const float nw = (float)(atan2((float)r.y, (float)r.x) + ((angle + 180) * M_PI / 180)); r.x = (int)((sin(1.5 * M_PI - nw) * c) + 0.5) + hotspot.x; r.y = -(int)((sin(nw) * c) + 0.5) + hotspot.y; #else const float c = (float) std::sqrt((float)r.x*(float)r.x + (float)r.y*(float)r.y); const float nw = (float)(std::atan2((float)r.y, (float)r.x) + ((angle + 180) * M_PI / 180)); r.x = (int)((std::sin(1.5 * M_PI - nw) * c) + 0.5) + hotspot.x; r.y = -(int)((std::sin(nw) * c) + 0.5) + hotspot.y; #endif return r; } //: Return the distance to another point. //param CL_Point &p: The other point. int distance( const CL_Point &p ) const { #ifdef _MSC_VER return int(sqrt(double((x-p.x)*(x-p.x) + (y-p.y)*(y-p.y))) + 0.5f); #else return int(std::sqrt(double((x-p.x)*(x-p.x) + (y-p.y)*(y-p.y))) + 0.5f); #endif } //: Translate point. CL_Point &operator+=(const CL_Point &p) { x += p.x; y += p.y; return *this; } //: Translate point negatively. CL_Point &operator-=(const CL_Point &p) { x -= p.x; y -= p.y; return *this; } //: Point + Point operator. CL_Point operator+(const CL_Point &p) const { return CL_Point(x + p.x, y + p.y); } //: Point - Point operator. CL_Point operator-(const CL_Point &p) const { return CL_Point(x - p.x, y - p.y); } //: Point == Point operator (deep compare) bool operator==(const CL_Point &p) const { return (x == p.x) && (y == p.y); } //: Point != Point operator (deep compare) bool operator!=(const CL_Point &p) const { return (x != p.x) || (y != p.y); } // Attributes: public: //: X coordinate. int x; //: Y coordinate. int y; }; //: 2D (x,y) floating point point structure. class CL_Pointf { // Construction: public: //: Constructs a point. //param x: Initial x value. //param y: Initial y value. //param p: Point to use for initial values. CL_Pointf() { return; } CL_Pointf(const CL_Point& p) : x((float)p.x), y((float)p.y) {} CL_Pointf(float x, float y) : x(x), y(y) { } CL_Pointf(const CL_Pointf &p) { x = p.x; y = p.y; } // Operations: public: //: Return a rotated version of this point. //param hotspot: The point around which to rotate. //param angle: The amount of degrees to rotate by, clockwise. CL_Pointf rotate( const CL_Pointf &hotspot, float angle) const { //Move the hotspot to 0,0 CL_Pointf r(x - hotspot.x, y - hotspot.y); //Do some Grumbel voodoo. // MSVC is doesn't recognize std::sin and friends #ifdef _MSC_VER const float c = (float)(sqrt(r.x*r.x + r.y*r.y)); const float nw = (float)((float)atan2(r.y, r.x) + ((angle + 180) * M_PI / 180)); r.x = ((float)(sin(1.5 * M_PI - nw)) * c) + hotspot.x; r.y = -((float)(sin(nw)) * c) + hotspot.y; #else const float c = (float)(std::sqrt(r.x*r.x + r.y*r.y)); const float nw = (float)((float)std::atan2(r.y, r.x) + ((angle + 180) * M_PI / 180)); r.x = ((float)(std::sin(1.5 * M_PI - nw)) * c) + hotspot.x; r.y = -((float)(std::sin(nw)) * c) + hotspot.y; #endif return r; } //: Return the distance to another point. //param CL_Pointf &p: The other point. float distance( const CL_Pointf &p ) const { #ifdef _MSC_VER return (float) sqrt((x-p.x)*(x-p.x) + (y-p.y)*(y-p.y)); #else return std::sqrt((x-p.x)*(x-p.x) + (y-p.y)*(y-p.y)); #endif } //: Translate point. CL_Pointf &operator+=(const CL_Pointf &p) { x += p.x; y += p.y; return *this; } //: Translate point negatively. CL_Pointf &operator-=(const CL_Pointf &p) { x -= p.x; y -= p.y; return *this; } //: Point + Point operator. CL_Pointf operator+(const CL_Pointf &p) const { return CL_Pointf(x + p.x, y + p.y); } //: Point - Point operator. CL_Pointf operator-(const CL_Pointf &p) const { return CL_Pointf(x - p.x, y - p.y); } //: Point == Point operator (deep compare) bool operator==(const CL_Pointf &p) const { return (x == p.x) && (y == p.y); } //: Point != Point operator (deep compare) bool operator!=(const CL_Pointf &p) const { return (x != p.x) || (y != p.y); } // Attributes: public: //: X coordinate. float x; //: Y coordinate. float y; }; inline CL_Point::CL_Point(const CL_Pointf& p) : x(static_cast(p.x)), y(static_cast(p.y)) {} #endif