
COBF Reference Manual V1.06 (2006-01-07)

-1-

COBF

The C/C++ Sourcecode Obfuscator

A Program
By

Bernhard Baier

email: bernhard.baier@gmx.net
WWW: http://home.arcor.de/bernhard.baier

V 1.06

2006-01-07

This package is copyrighted.
See file copyright.txt for details

COBF Reference Manual V1.06 (2006-01-07)

-2-

1. INTRODUCTION 3

2. INSTALLATION 4

2.1. Using an existing executable of COBF 4

2.2. Compilation of COBF 4

2.3. Creating the Script for Calling the Preprocessor 4

3. INVOCATION AND CONFIGURATION OF COBF 5

3.1. Introduction 5

3.2. Invocation 7

3.3. The includefile handling of COBF 8
External Includefiles 8
Internal Includefiles 8
Separate Headerfiles 8

4. STRATEGIES FOR OBFUSCATION OF C/C++ SOURCECODE 9
How Do I Handle <...> Includes? 9
How Do I Achieve the Best Possible Compression and Encryption Of My Sourcefiles? 9
How Do I Preserve the Original File Structure? 9
How Do I Preserve Portability and Configurability of My Sourcefiles? 10

5. TECHNICAL DETAILS 12

5.1. C or C++ 12

5.2. Whitespace Compression 12

5.3. Identifier renaming 13

6. TROUBLESHOOTING 14

ACKNOWLEDGEMENTS 15

CHANGE HISTORY 15

COBF Reference Manual V1.06 (2006-01-07)

-3-

1. Introduction

COBF (aka C-Obfuscator) is a program which manipulates C or C++ sourcefiles in a way that they aren't
readable by human beings; but they remain compilable.

The benefit of COBF lies in the distribution of programs (freeware, shareware, commercial software etc.):
The distribution as a executable binary is often too inflexible (especially for Unix or Windows NT, because it is
normally not feasible to support all possible platforms); on the other side one might not give away the sourcecode
(e. g. it looks poor [badly commented, Spaghetti code], or you just want to prevent plagiarism).

Here COBF can play an important role: It removes all comments and sourcecode formattings and renames all
variable and function identifiers. In the future a special add-on filter will break up all for, while and if statements
into goto statements.

Here is an example:

#define MAX_INDEX 10
int my_output()
{
 int count;
 for (count = 0; count < MAX_INDEX; ++count)
 print_result(count);
}

becomes something like that:

a l47(){a l234;g(l118=0;l118<10;++l118)l93(l118);}

You need only little imagination to realize that programs prepared in such a way are practical unreadable.
Conclusions to the original contents are only possible with great effort (similiar to dissassembling on machine
language level).

COBF Reference Manual V1.06 (2006-01-07)

-4-

2. Installation

There is no special installation procedure for COBF. Simply unpack the archive cobf.zip to a newly created
directory. See files.txt for a complete content description list of the COBF archive!

2.1. Using an existing executable of COBF

In the src\win32\Release\ directory you can find an executable of COBF for Windows95/NT/XP.

For a first try run demo_test.bat in the demo/-directory if you are using Windows 95 / NT / XP. (Please have
before a look into the pp_ger_msvc.bat file in the etc\ directory whether it fit to you local compiler/preprocessor
installatation

2.2. Compilation of COBF

If you want to make changes on the COBF sources or if there is no binary for your machine you must compile the
COBF sources

For Unix/Linux you might start with the makefile located in the src/unix directory (Please keep in mind that the
makefile expects that all C++ source files have the extension “.cc” instead of “.cpp”. Also it has to be noticed that
the GNU C/C++ compiler has sometimes problems with source files having linefeed + carriage return as line
delimiter (as it is ususal for DOS), not only a line feed. This leeds especially to problem with macros spanning
over more than one line with the ‘\’ delimiter. Convert such files with the dos2unix command.)

If you want to make changes on the file scan.l you need additionally a LEX-compatible scanner generator (e. g.
GNU-flex). Take notice: The used LEX must generate ANSI-C, not old-style K&C function definitions! However
if this is the case you must manually change the generated file lex_yy.c or the corresponding LEX library files.
The reason for this is that lex_yy.c will be compiled as C++ sourcecode and C++ doesn't allow old-style function
definitions.

2.3. Creating the Script for Calling the Preprocessor

COBF needs for full functionality a C / C++ preprocessor which should be shipped as a command line tool with
your C / C++ compiler. COBF does not call the preprocessor directly but it uses a special shell script (in the
standard COBF package the script names start with pp_* and are located in the etc/ -directory – normally they
must be adapted to your operating system and compiler environment.)
This preprocessor shell script expects 2 arguments:

pp_<xyz>(.bat) Inputfile Outputfile

COBF expects that the pp_* script writes the preprocessed Inputfile to Outputfile. There is no need to tell the
invoked preprocessor something about include pathes; the include file handling is completly done by COBF.

The pp_borlandc.bat script was tested with the Borland C/C++ preprocessor. The pp_ger_msvc.bat script was
tested with the preprocessor coming with Microsoft Visual Studio. The pp_cc script was tested with the GNU C
preprocessor.

COBF Reference Manual V1.06 (2006-01-07)

-5-

3. Invocation and Configuration of COBF

3.1. Introduction

Please read the following instructions carefully. Otherwise your shrouded sources won't be compilable!

IMPORTANT! Look after every COBF session to the protocol file cobf.log!! Take notice of eventually occuring
warnings!

Now lets look at a simple example. We want to shroud the following sourcefile test.c (you can find this example
in the demo-directory):

/* test.c - simple test program for COBF */

#include <stdio.h>
#ifdef unix
#define MAX_COUNT 10
#else
#define MAX_COUNT 20
#endif

int main()
{
 int i;
 for (i = 0; i < MAX_COUNT; ++i)
 printf("Hello %d!\n", i);
 return 0;
}

For example the demo_test.bat (should work with all Windows Osses like 95 or XP) has the folling content:

..\src\win32\release\cobf @demo_token.inv -o output -b -p
..\etc\pp_ger_msvc.bat test.c

After invoking the batch file you should find the following output in the output directory (under the demo
directory)

/* COBF by BB -- 'test.c' obfuscated at Sun Jan 21 18:44:05 1996
*/
#include<stdio.h>
#include"cobf.h"
#ifdef unix
#define b 10
#else
#define b 20
#endif
c e(){c a;d(a=0;a<b;++a)f("\x48\x65\x6c\x6c\x6f\x20 \x25\x64\x21\n",a)
;g 0;}

This shrouded sourcefile test.c in the output directory is compilable and yields the same object file as the original
test.c sourcefile!

COBF Reference Manual V1.06 (2006-01-07)

-6-

You may wonder that seemingly such essential C keywords as if or for disappeared. The disbandment is simple:
Look at the headerfile cobf.h in the output directory:

/* COBF by BB -- obfuscated at Sun Jan 21 18:44:05 1996
*/
#define c int
#define e main
#define d for
#define f printf
#define g return

While local identifiers (here in the example the index variable i) are completly replaced by a new identifier, some
other identifiers like the C tokens (if, for) or identifiers with extern linkage (main, printf) are only exchanged on
preprocessor level.

Now let's take a look on the generated logfile outdir/cobf.log (the comments were later inserted):

Logfile for shrouding at Sun Jan 21 18:44:05 1996

output dirctory: output
shell script for performing preprocessing: ..\etc\c obf_pp.bat

/* Part 1 */
List of shrouded sourcefiles:
(H) included by another sourcefile (P) preprocessed header
(S) separately shrouded header (X) external header
test.c includes: stdio.h[X]

/* Part 2 */
No headerfile was included by cobf!

/* Part 3 */
The following external includefiles were found:
(all external visible identifiers in this files MUS T be defined as tokens
for cobf!!)
stdio.h

/* Part 4 */
No headerfile was separately shrouded!

COBF Reference Manual V1.06 (2006-01-07)

-7-

3.2. Invocation

General syntax:

cobf options [@invocationfile] ... filename [...]

Arguments in an invocationfile are treated as if they were directly passed by command line.

Main options:

-hi filename specifies filename as an internal includefile, i. e. a headerfile which will be

not separately shrouded and instead included by COBF
-hs filename specifies filename as a separate includefile, i. e. a headerfile which will be

separately shrouded
-i path adds path to the search path list for source and header files
-m filename adds identifiers in filename to the system macro list (will not be shrouded or

preprocessed)
-mi filename Specifies the identifier mapping file filename. Each line must consist of the

original identifier and then the new identifier separated by one or more
whitespaces. Indetifier clashes to shrouded identifiers are detected.

-t filename adds identifiers in filename to the keyword list (only shrouded by
preprocessor)

-o outputdir destination for temporary and shrouded files
-p batchfile script for invoking the preprocessor (1st argument input file, 2nd input file)

Output options:

-b Preserve original filenames in output directory (per default the shrouded files

are renamed to a?.ext where '?' are consecutive numbers beginning with 0)
-c filename concatenate all sourcefiles to one file filename
-g do not shroud strings (per default strings are obfuscated by using the ASCII-

equivalent in hex for each character)
-dd filename dump identifier dictionary to filename
-dm filename dump identifier mapping list to filename
-r right margin specifies the left most column for the shrouded sourcefiles
-u Treat keyword lists (specified with the -t-option) in the same manner as

system makro lists (specified with the -m-option). The result is no shrouding
on preprocessor level.

-x prefix For all output files add string prefix to each identifier
-xn do not use characters 'a' - 'z' after the prefix for the most used identifiers

Debug options:

-a Do not delete temporary files generated by each COBF pass
-d include debug comments into shrouded files
-di Add original identifier to each shrouded identifier
-f filter mode (no shrouding)
-n no preprocessing
-s stop after pass 1 (optional -s0 to -s5)
-v verbose (optional -v1 to -v9 to increase verbose level)

COBF Reference Manual V1.06 (2006-01-07)

-8-

3.3. The includefile handling of COBF

COBF distinguishes between three kinds of includefiles:

External Includefiles

We call an includefile an external includefile, if it isn't explicitly passed to COBF as a comand line parameter.

So external includefiles are not an intrinsic component of your sourcefile configuration. Rather it is expected that
they are per default existing on the target platform. Examples are stdio.h (ANSI) or unistd.h.(Unix).

All global visible identifiers in external includefiles must be declared via the -t- or -m- command line option.
The file cansilib.tok contains a subset of reserved identifiers conforming to the ANSI-C-standard. It is not
considered that ANSI-C generally reserves all identifiers for example beginning with is (like isalpha etc.)
because it is actually only possible to declare explicitly known identifiers. But in practice this shouldn't be a
problem because all "fixed" identifiers of the ANSI-C-standard library declared in the well-known headers like
stdio.h or stdlib.h are (hopefully) registered.

There are actually no corresponding token lists for C++ or generally for operating system dependend includefiles
(e. g. dos.h for DOS, windows.h for Windows 3.1/95/NT or unistd.h for Unix). If you have written such lists
please let me know.

External includefiles are marked with [X] in the protocol file cobf.log.

Internal Includefiles

We call an includefile an internal includefile if it is passed via the -hi-Option to COBF. If COBF finds in an early
stage of analyzing a sourcefile an #include statement with an internal headerfile, it simply substitutes (without
help of the preprocessor!) the #include statement with the contents of the includefile. Recursive including is
prevented. The resulting sourcefile will be preprocessed if not the -n-option is given (no preprocessing)

Internal includefiles are marked with [P] in the protocol file cobf.log.

Separate Headerfiles

We call an includefile a separate includefile if it is passed via the -hs-Option to COBF. Separate includefiles will
not be preprocessed. Consequently #define or #if-Statements in the remaining sourcefiles which contain macros
defined in separate includefiles will not be preprocessed.

Separate includefiles are marked with [S] in the protocol file cobf.log.

COBF Reference Manual V1.06 (2006-01-07)

-9-

4. Strategies for Obfuscation of C/C++ Sourcecode

How Do I Handle <...> Includes?

Headerfiles, which export functions, macros or variables available on the target platform should be treated as
external includefiles (see above).

Such headerfiles are normally included with angle brackets, like that:

#include <stdio.h>

So

• do not pass such headerfiles via the command line to COBF

• declare all identifiers exported by such headerfiles via the -t (or -m-)option

This guarantees that that your sourcefiles remain compilable on the target platform

• without unresolved externals reported by the linker

• independend of the fact whether a function is implemented as a "real" function or as a macro.

How Do I Achieve the Best Possible Compression and Encryption Of My
Sourcefiles?

Use the -a-Option; all sourcefiles will be concatenated to one file and the shrouded as a single piece of
sourcecode.

Caution: It might be neccessary to make changes that your sourcefiles are compileable as a single piece of
sourcecode. Possible pitfalls are for example repeated includefiles, redefinition of macros or multiple
declarations of static variables.

How Do I Preserve the Original File Structure?

To preserve the original file structure do the following:

• declare your own headerfiles as separate includefiles

• to prevent the renaming of your sourcefiles use the -b-option

Take care! COBF doesn't invoke the preprocessor for separate includefiles; preprocessor statements in other
sourcefiles with dependencies to macros defined in separate includefiles won't be shrouded, too. So conclusions
to the original sourcecode may be easier. So it's recommended to use separate includefiles only where it is
necessary (see next chapter for an example).

COBF Reference Manual V1.06 (2006-01-07)

-10-

How Do I Preserve Portability and Configurability of My Sourcefiles?

COBF distinguishes between system macros of 1st and 2nd order.

The so called 1st order system macros are declared with the -m-option (examples are __LINE__, unix)
A macro will automatically added to the list of 2nd order system macros by COBF when

• the macro is #defined in a separate includefile

• the mcro is #defined in a #if-block with the #if-statement containing a system macro.

Then the following rules apply:

• Preprocessor statements containing system macros (either 1st oder 2nd order) are not preprocessed by COBF.

• COBF does not shroud 1st order system macros

• COBF substitutes 2nd order system macros on the preprocessor level (as an consequence COBF generates for

each 2nd order system marco a #define-statement in the headerfile cobf.h)

An example:

#ifdef unix
#define PATH_SEPARATOR "/"
#else
#define PATH_SEPARATOR "\\"
#endif

After shrouding it might look like this:

#ifdef unix
#define l4711 "/"
#else
#define l4711 "\\"
#endif

In this example unix is a 1st order system macro. Therefore COBF declares automatically PATH_SEPARATOR
as 2nd order system macro. None of these two macros must be proprocessed by COBF itself to preserve
portability on different target platforms; but in this example it is suitable to exchange the macro
PATH_SEPARATOR with a less-readable identifier.

COBF Reference Manual V1.06 (2006-01-07)

-11-

The concept of system macros is also usefull to preserve source code configurability.

An example:

/* File myconfig.h */
#define MAX_WINDOWS 20
#define MAX_COLORS 256
...
#if MAX_COLORS > 256
#include "rgb.h"
#endif
...

It should be posssible for the receiver of the shrouded sources to configure the sources in a pretended way.
There are three posibilities:

• define all macros in myconfig.h explicitly as system macros
• declare myconfig.h as a separate includefile; the macros there defined will be renamend, but they won't be

preprocessed
• declare blocks of system macros with the special system macro __COBF__:

An example:

#if !defined __COBF__ /* __COBF__ should be never d efined so the
 condition is always true! */

#define MAX_WINDOWS 20
#define MAX_COLORS 256

#endif

The trick is that COBF internally keeps __COBF__ as a 1st order system macro. Additionally all macros which
are defined in a #if block containing __COBF__ were also declared as 1st order system macros (in contrary to
the above rule, normaly they would declared as 2nd order system macros).
The benefit in this example is that the identifiers MAX_WINDOWS and MAX_COLORS keep their original names
after the shrouding too.

COBF Reference Manual V1.06 (2006-01-07)

-12-

5. Technical Details

There are some details about internal procedures the interested reader may want to know.

5.1. C or C++

For COBF it makes no difference whether the sources are coded in C or C++ because COBF analyzes the sources
only on the token level. There is no syntax check. A consequence is, for example, that C++-style comments (// ..
) are allowed for C programs too.

5.2. Whitespace Compression

A C-Obfuscator shall remove all comments and as much as possible whitespaces from the program sources.

The removal of comments is easy. One have to care a little more to remove all unneeded whitespaces.

It's obviously erroneous to change

int a;

to

inta;

It is not so obviously, that this C++ fragment

List<List<String> >

shall not be changed to

List<List<String>>

because ">>" is a new token (the shift operator).

A C analogue:

a = b + +3;

Here it's not allowed to remove the space between the plus signs.

Here is another strange combination:

extern double a, *c;
b = a / * c;

COBF treats the source file as a sequence of tokens separated by whitespaces (normally blanks and newlines) or
comments (C-style and C++-style comments)

COBF inserts a blank between two tokens if otherwise

• two letters or numbers
• two equal charactes
• a asterisk and a non-letter (or vice versa)

would immediately succeed.

COBF Reference Manual V1.06 (2006-01-07)

-13-

I hope I considered all possible "strange" character and token combinations which can occur in C or C++. On the
contrary it should not be difficult to find examples where the above rules are inserting unneeded blanks.

5.3. Identifier renaming

The basic idea of a C obfusctor is quite simple:1.

Let's take a look at the follwing program section:

int main()
{
 int i:
 i = 7;
 {
 int i;
 i = 8;
 printf("%d\n",i);
 }
 printf("%d\n", i);
}

For COBF it is completly irrelevant that i is the identifier of two different objects. It is sufficient to replace
systematicly all identical identifiers with another ones (which should not occure elsewhere in the original
sources).

1 The C Obfusactor OPQCP (OpaqueCopy) from Russ Fish (fish%kzin@cs.utah.edu) inspired me to do the same.

COBF Reference Manual V1.06 (2006-01-07)

-14-

6. Troubleshooting

If a program you obfuscated with COBF isn't compileable you should first look at the file cobf.log. There is a
brief summary what COBF has done when shrouding your sources.

Here is a short list of possible traps and pitfalls and hints:

• use the –di option to get better understandable compiler error messages (don’t forget to remove this option for

the final obfuscating run!)

• Not all “public” symbols in the external headerfiles (marked with [X] in cobf.log) are known to COBF. See

the section “How Do I Handle <...> Includes?” for details.

• Check your general obfuscating stretegy: What is is an external, internal or separate header file?

• There are problems with macros containing the "#" or "##" operator or identifiers builded with the toking

pasting operator. Look a at the affiliated sections in the cobf.log file!

• A system token (e. g. a C key word like const or void) gets redefined. Increase the verbose level via the -v

option to find this out!

• You are using not fully supported #include statement constructs e. g. the include filename is a #defined value

• A #pragma directive may in some strange situations not be properly treated by COBF

• You are using inline assembling

• You encountered a bug of COBF (to isolate the problem use the debug options, e. g. “–a” to have a look at

the temprary files COBF generates)

In every case, by increasing the verbose level and using the -d option (debug info is inserted in the shrouded
source file by comments) you should be able to encircle the problem.

COBF Reference Manual V1.06 (2006-01-07)

-15-

Acknowledgements

Barry Corlett (barry@bramley.spacenet.de) proof-read this documentation.
My brother Thomas (thomas.baier@stmuc.com) provided the first useful application of COBF: The source
distribution of 3DTO3D, an execellent 3D format conversion tool.
Alexei Kostin reported the bug concerning the wrong handling of 8 bit character input.
Claudius Schnörr proposed source code changes for being compliant with ANSI C++ and reported a bug (clash
between shrouded vs. system token identifiers)

Change History

Version Date Comment
1.0 1st public version
1.01 1998-03-22 minor fixes
1.02 2000-10-31 added -x option (prefix)
1.03 2002-05-01 - Documentation and installation cleanup

- default PC target is now MS Visual Studio
- source code change: when opening a stream now explicit ios flags will be passed
(old method seems to open the stream with wrong default settings ..)

1.04 2003-01-01 bugfix: now 8 bit input is correctly handled (due to switch to GNU-Flex 2.5)
1.05 2006-01-02 Adaptation of the source code for ANSI-C++ (tested with Visual Studio .NET

2003 and gcc 3.4.4)
New command line options ‘-xn’, ‘-di’ and ‘-dd’
Bugfix: identifier clash between system token list and shrouded identifiers now
detected

1.06 2006-01-07 New command line options ‘-mi’ and ‘-dm’
Changed semantics for building the shrouded identifier: default prefix is now ‘l’
which can be overwritten by the ‘-x’ option

