/**************************************************************************** ** ** Copyright (C) 1992-2007 Trolltech ASA. All rights reserved. ** ** This file is part of the QtCore module of the Qt Toolkit. ** ** This file may be used under the terms of the GNU General Public ** License version 2.0 as published by the Free Software Foundation ** and appearing in the file LICENSE.GPL included in the packaging of ** this file. Please review the following information to ensure GNU ** General Public Licensing requirements will be met: ** http://trolltech.com/products/qt/licenses/licensing/opensource/ ** ** If you are unsure which license is appropriate for your use, please ** review the following information: ** http://trolltech.com/products/qt/licenses/licensing/licensingoverview ** or contact the sales department at sales@trolltech.com. ** ** In addition, as a special exception, Trolltech gives you certain ** additional rights. These rights are described in the Trolltech GPL ** Exception version 1.0, which can be found at ** http://www.trolltech.com/products/qt/gplexception/ and in the file ** GPL_EXCEPTION.txt in this package. ** ** In addition, as a special exception, Trolltech, as the sole copyright ** holder for Qt Designer, grants users of the Qt/Eclipse Integration ** plug-in the right for the Qt/Eclipse Integration to link to ** functionality provided by Qt Designer and its related libraries. ** ** Trolltech reserves all rights not expressly granted herein. ** ** Trolltech ASA (c) 2007 ** ** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE ** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ** ****************************************************************************/ #include "qpoint.h" #include "qdatastream.h" #include "qdebug.h" /*! \class QPoint \ingroup multimedia \brief The QPoint class defines a point in the plane using integer precision. A point is specified by a x coordinate and an y coordinate which can be accessed using the x() and y() functions. The isNull() function returns true if both x and y are set to 0. The coordinates can be set (or altered) using the setX() and setY() functions, or alternatively the rx() and ry() functions which return references to the coordinates (allowing direct manipulation). Given a point \e p, the following statements are all equivalent: \code QPoint p; p.setX(p.x() + 1); p += QPoint(1, 0); p.rx()++; \endcode A QPoint object can also be used as a vector: Addition and subtraction are defined as for vectors (each component is added separately). A QPoint object can also be divided or multiplied by an \c int or a \c qreal. In addition, the QPoint class provides the manhattanLength() function which gives an inexpensive approximation of the length of the QPoint object interpreted as a vector. Finally, QPoint objects can be streamed as well as compared. \sa QPointF, QPolygon */ /***************************************************************************** QPoint member functions *****************************************************************************/ /*! \fn QPoint::QPoint() Constructs a null point, i.e. with coordinates (0, 0) \sa isNull() */ /*! \fn QPoint::QPoint(int x, int y) Constructs a point with the given coordinates (\a x, \a y). \sa setX(), setY() */ /*! \fn bool QPoint::isNull() const Returns true if both the x and y coordinates are set to 0, otherwise returns false. */ /*! \fn int QPoint::x() const Returns the x coordinate of this point. \sa setX(), rx() */ /*! \fn int QPoint::y() const Returns the y coordinate of this point. \sa setY(), ry() */ /*! \fn void QPoint::setX(int x) Sets the x coordinate of this point to the given \a x coordinate. \sa x() setY() */ /*! \fn void QPoint::setY(int y) Sets the y coordinate of this point to the given \a y coordinate. \sa y() setX() */ /*! \fn int &QPoint::rx() Returns a reference to the x coordinate of this point. Using a reference makes it possible to directly manipulate x. For example: \code QPoint p(1, 2); p.rx()--; // p becomes (0, 2) \endcode \sa x() setX() */ /*! \fn int &QPoint::ry() Returns a reference to the y coordinate of this point. Using a reference makes it possible to directly manipulate y. For example: \code QPoint p(1, 2); p.ry()++; // p becomes (1, 3) \endcode \sa y(), setY() */ /*! \fn QPoint &QPoint::operator+=(const QPoint &point) Adds the given \a point to this point and returns a reference to this point. For example: \code QPoint p( 3, 7); QPoint q(-1, 4); p += q; // p becomes (2, 11) \endcode \sa operator-=() */ /*! \fn QPoint &QPoint::operator-=(const QPoint &point) Subtracts the given \a point from this point and returns a reference to this point. For example: \code QPoint p( 3, 7); QPoint q(-1, 4); p -= q; // p becomes (4, 3) \endcode \sa operator+=() */ /*! \fn QPoint &QPoint::operator*=(qreal factor) Multiplies this point's coordinates by the given \a factor, and returns a reference to this point. For example: \code QPoint p(-1, 4); p *= 2.5; // p becomes (-3, 10) \endcode Note that the result is rounded to the nearest integer as points are held as integers. Use QPointF for floating point accuracy. \sa operator/=() */ /*! \fn bool operator==(const QPoint &p1, const QPoint &p2) \relates QPoint Returns true if \a p1 and \a p2 are equal; otherwise returns false. */ /*! \fn bool operator!=(const QPoint &p1, const QPoint &p2) \relates QPoint Returns true if \a p1 and \a p2 are not equal; otherwise returns false. */ /*! \fn const QPoint operator+(const QPoint &p1, const QPoint &p2) \relates QPoint Returns a QPoint object that is the sum of the given points, \a p1 and \a p2; each component is added separately. \sa QPoint::operator+=() */ /*! \fn const QPoint operator-(const QPoint &p1, const QPoint &p2) \relates QPoint Returns a QPoint object that is formed by subtracting \a p2 from \a p1; each component is subtracted separately. \sa QPoint::operator-=() */ /*! \fn const QPoint operator*(const QPoint &point, qreal factor) \relates QPoint Returns a copy of the given \a point multiplied by the given \a factor. Note that the result is rounded to the nearest integer as points are held as integers. Use QPointF for floating point accuracy. \sa QPoint::operator*=() */ /*! \fn const QPoint operator*(qreal factor, const QPoint &point) \overload \relates QPoint Returns a copy of the given \a point multiplied by the given \a factor. */ /*! \fn const QPoint operator-(const QPoint &point) \overload \relates QPoint Returns a QPoint object that is formed by changing the sign of both components of the given \a point. Equivalent to \c{QPoint(0,0) - point}. */ /*! \fn QPoint &QPoint::operator/=(qreal divisor) \overload Divides both x and y by the given \a divisor, and returns a reference to this point. For example: \code QPoint p(-3, 10); p /= 2.5; // p becomes (-1, 4) \endcode Note that the result is rounded to the nearest integer as points are held as integers. Use QPointF for floating point accuracy. \sa operator*=() */ /*! \fn const QPoint operator/(const QPoint &point, qreal divisor) \relates QPoint Returns the QPoint formed by dividing both components of the given \a point by the given \a divisor. Note that the result is rounded to the nearest integer as points are held as integers. Use QPointF for floating point accuracy. \sa QPoint::operator/=() */ /***************************************************************************** QPoint stream functions *****************************************************************************/ #ifndef QT_NO_DATASTREAM /*! \fn QDataStream &operator<<(QDataStream &stream, const QPoint &point) \relates QPoint Writes the given \a point to the given \a stream and returns a reference to the stream. \sa {Format of the QDataStream Operators} */ QDataStream &operator<<(QDataStream &s, const QPoint &p) { if (s.version() == 1) s << (qint16)p.x() << (qint16)p.y(); else s << (qint32)p.x() << (qint32)p.y(); return s; } /*! \fn QDataStream &operator>>(QDataStream &stream, QPoint &point) \relates QPoint Reads a point from the given \a stream into the given \a point and returns a reference to the stream. \sa {Format of the QDataStream Operators} */ QDataStream &operator>>(QDataStream &s, QPoint &p) { if (s.version() == 1) { qint16 x, y; s >> x; p.rx() = x; s >> y; p.ry() = y; } else { qint32 x, y; s >> x; p.rx() = x; s >> y; p.ry() = y; } return s; } #endif // QT_NO_DATASTREAM /*! Returns the sum of the absolute values of x() and y(), traditionally known as the "Manhattan length" of the vector from the origin to the point. For example: \code QPoint oldPosition; MyWidget::mouseMoveEvent(QMouseEvent *event) { QPoint point = event->pos() - oldPosition; if (point.manhattanLength() > 3) // the mouse has moved more than 3 pixels since the oldPosition } \endcode This is a useful, and quick to calculate, approximation to the true length: \code int trueManhattenLength = sqrt(pow(x(), 2) + pow(y(), 2)); \endcode The tradition of "Manhattan length" arises because such distances apply to travelers who can only travel on a rectangular grid, like the streets of Manhattan. */ int QPoint::manhattanLength() const { return qAbs(x())+qAbs(y()); } #ifndef QT_NO_DEBUG_STREAM QDebug operator<<(QDebug dbg, const QPoint &p) { dbg.nospace() << "QPoint(" << p.x() << ',' << p.y() << ')'; return dbg.space(); } QDebug operator<<(QDebug d, const QPointF &p) { d << "QPointF(" << p.x() << ", " << p.y() << ")"; return d; } #endif /*! \class QPointF \ingroup multimedia \brief The QPointF class defines a point in the plane using floating point precision. A point is specified by a x coordinate and an y coordinate which can be accessed using the x() and y() functions. The coordinates of the point are specified using floating point numbers for accuracy. The isNull() function returns true if both x and y are set to 0.0. The coordinates can be set (or altered) using the setX() and setY() functions, or alternatively the rx() and ry() functions which return references to the coordinates (allowing direct manipulation). Given a point \e p, the following statements are all equivalent: \code QPointF p; p.setX(p.x() + 1.0); p += QPoint(1.0, 0.0); p.rx()++; \endcode A QPointF object can also be used as a vector: Addition and subtraction are defined as for vectors (each component is added separately). A QPointF object can also be divided or multiplied by an \c int or a \c qreal. In addition, the QPointF class provides a constructor converting a QPoint object into a QPointF object, and a corresponding toPoint() function which returns a QPoint copy of \e this point. Finally, QPointF objects can be streamed as well as compared. \sa QPoint, QPolygonF */ /*! \fn QPointF::QPointF() Constructs a null point, i.e. with coordinates (0.0, 0.0) \sa isNull() */ /*! \fn QPointF::QPointF(const QPoint &point) Constructs a copy of the given \a point. \sa toPoint() */ /*! \fn QPointF::QPointF(qreal x, qreal y) Constructs a point with the given coordinates (\a x, \a y). \sa setX(), setY() */ /*! \fn bool QPointF::isNull() const Returns true if both the x and y coordinates are set to 0.0, otherwise returns false. */ /*! \fn qreal QPointF::x() const Returns the x-coordinate of this point. \sa setX(), rx() */ /*! \fn qreal QPointF::y() const Returns the y-coordinate of this point. \sa setY(), ry() */ /*! \fn void QPointF::setX(qreal x) Sets the x coordinate of this point to the given \a x coordinate. \sa x() setY() */ /*! \fn void QPointF::setY(qreal y) Sets the y coordinate of this point to the given \a y coordinate. \sa y(), setX() */ /*! \fn qreal& QPointF::rx() Returns a reference to the x coordinate of this point. Using a reference makes it possible to directly manipulate x. For example: \code QPoint p(1.1, 2.5); p.rx()--; // p becomes (0.1, 2.5) \endcode \sa x(), setX() */ /*! \fn qreal& QPointF::ry() Returns a reference to the y coordinate of this point. Using a reference makes it possible to directly manipulate y. For example: \code QPoint p(1.1, 2.5); p.ry()++; // p becomes (1.1, 3.5) \endcode \sa y() setY() */ /*! \fn QPointF& QPointF::operator+=(const QPointF &point) Adds the given \a point to this point and returns a reference to this point. For example: \code QPoint p( 3.1, 7.1); QPoint q(-1.0, 4.1); p += q; // p becomes (2.1, 11.2) \endcode \sa operator-=() */ /*! \fn QPointF& QPointF::operator-=(const QPointF &point) Subtracts the given \a point from this point and returns a reference to this point. For example: \code QPoint p( 3.1, 7.1); QPoint q(-1.0, 4.1); p -= q; // p becomes (4.1, 3.0) \endcode \sa operator+=() */ /*! \fn QPointF& QPointF::operator*=(qreal factor) Multiplies this point's coordinates by the given \a factor, and returns a reference to this point. For example: \code QPoint p(-1.1, 4.1); p *= 2.5; // p becomes (-2.75,10.25) \endcode \sa operator/=() */ /*! \fn QPointF& QPointF::operator/=(qreal divisor) Divides both x and y by the given \a divisor, and returns a reference to this point. For example: \code QPoint p(-2.75, 10.25); p /= 2.5; // p becomes (-1.1,4.1) \endcode \sa operator*=() */ /*! \fn const QPointF operator+(const QPointF &p1, const QPointF &p2) \relates QPointF Returns a QPointF object that is the sum of the given points, \a p1 and \a p2; each component is added separately. \sa QPointF::operator+=() */ /*! \fn const QPointF operator-(const QPointF &p1, const QPointF &p2) \relates QPointF Returns a QPointF object that is formed by subtracting \a p2 from \a p1; each component is subtracted separately. \sa QPointF::operator-=() */ /*! \fn const QPointF operator*(const QPointF &point, qreal factor) \relates QPointF Returns a copy of the given \a point, multiplied by the given \a factor. \sa QPointF::operator*=() */ /*! \fn const QPointF operator*(qreal factor, const QPointF &point) \relates QPointF \overload Returns a copy of the given \a point, multiplied by the given \a factor. */ /*! \fn const QPointF operator-(const QPointF &point) \relates QPointF \overload Returns a QPointF object that is formed by changing the sign of both components of the given \a point. Equivalent to \c {QPointF(0,0) - point}. */ /*! \fn const QPointF operator/(const QPointF &point, qreal divisor) \relates QPointF Returns the QPointF object formed by dividing both components of the given \a point by the given \a divisor. \sa QPointF::operator/=() */ /*! \fn QPoint QPointF::toPoint() const Rounds the coordinates of this point to the nearest integer, and returns a QPoint object with the rounded coordinates. \sa QPointF() */ /*! \fn bool operator==(const QPointF &p1, const QPointF &p2) \relates QPointF Returns true if \a p1 is equal to \a p2; otherwise returns false. */ /*! \fn bool operator!=(const QPointF &p1, const QPointF &p2); \relates QPointF Returns true if \a p1 is not equal to \a p2; otherwise returns false. */ #ifndef QT_NO_DATASTREAM /*! \fn QDataStream &operator<<(QDataStream &stream, const QPointF &point) \relates QPointF Writes the given \a point to the given \a stream and returns a reference to the stream. \sa {Format of the QDataStream Operators} */ QDataStream &operator<<(QDataStream &s, const QPointF &p) { s << double(p.x()) << double(p.y()); return s; } /*! \fn QDataStream &operator>>(QDataStream &stream, QPointF &point) \relates QPointF Reads a point from the given \a stream into the given \a point and returns a reference to the stream. \sa {Format of the QDataStream Operators} */ QDataStream &operator>>(QDataStream &s, QPointF &p) { double x, y; s >> x; s >> y; p.setX(qreal(x)); p.setY(qreal(y)); return s; } #endif // QT_NO_DATASTREAM