/* Copyright (C) 2004 T. Scott Dattalo This file is part of gpsim. gpsim is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. gpsim is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with gpsim; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #ifndef _WIN32 #include #endif #include #include #include #include //#include "../src/processor.h" #include "../src/symbol.h" #include "../src/protocol.h" #include "../src/gpsim_interface.h" #include "../src/breakpoints.h" #include "../src/gpsim_time.h" #ifndef _WIN32 #include #include #else #include #endif //******** E X P E R I M E N T A L C O D E !!! ************************* // Here is an experimental attribute for testing the socket interface. // The purpose is to isolate socket testing from the rest of the simulator. // class TestInt32Array : public symbol { public: TestInt32Array(const char *_name, int _sz) : symbol(_name) { set_description(" test array for testing sockets"); size = _sz; array = new int[size]; } ~TestInt32Array() { delete[] array; } virtual void set(const char *cP,int len=0) { std::cout << name() << " set\n"; } virtual void get(char *, int len) { std::cout << name() << " get\n"; } virtual string toString() { return name(); } private: int size; int *array; }; //************************* end of experimental code ******************** class SocketLink; class Socket; // in input.cc -- parse_string sends a string through the command parser extern int parse_string(const char * str); #ifdef WIN32 #define snprintf _snprintf #define socklen_t int bool server_started = false; void psocketerror(const char *str) { fprintf (stderr, "%s: %s\n", str, g_win32_error_message(WSAGetLastError())); } bool winsockets_init(void) { WSADATA wsaData; int err; if (0 != (err = WSAStartup( MAKEWORD( 2, 2 ), &wsaData ))) return false; /* Confirm that the WinSock DLL supports 2.2.*/ /* Note that if the DLL supports versions greater */ /* than 2.2 in addition to 2.2, it will still return */ /* 2.2 in wVersion since that is the version we */ /* requested. */ if (LOBYTE( wsaData.wVersion ) != 2 || HIBYTE( wsaData.wVersion ) != 2 ) { /* Tell the user that we could not find a usable */ /* WinSock DLL. */ WSACleanup( ); return false; } return true; } #else #define psocketerror(s) perror(s) #define closesocket(s) close(s) #define SOCKET int #define INVALID_SOCKET -1 #endif // /* gpsim sockets. The purpose of a socket interface into the simulator is to provide an external interface that only loosely depends upon gpsim's internals. Towards the bottom of this file is code that will start a server 'process' that will listen for clients. This 'process' is really a glib GIOChannel. The GIOChannel is a glib mechanism for handling things like sockets so that they work nicely when compiled for other platforms. Now, whenever a client connects to gpsim, another GIOChannel is created. This new channel has the client socket associated with it and is used to communicate with the client. Thus, like most socket server applications, gpsim creates a single socket to listen for clients. As clients come along, connections are established with them. gpsim uses GLIB's GIOChannels to facilitate the simultaneous multiple connections. Once a client has connected to gpsim, it can do just about everything a user sitting at a keyboard can do. In fact, the client can issue command line commands that are directed to the command line parser. Although, at the moment, the output of these commands still is sent to the terminal from which the gpsim executable was spawned (instead of being sent to the client socket...). Probably more powerful though is the ability for a client to establish 'links' to gpsim internal objects. These links are provide a client with an efficient access to gpsim's symbol table. There are two kinds of socket connection types that gpsim supports. I call them 'Simulator Source' and 'Simulator Sink' sockets. They're both similar in that they connect to a client through the normal mechanism. However, they're different in how they behave while the simulator is running. The Simulator Sink sockets are designed to be controlled by a GLIB GIOChannel. They are intended to receive unsolicited data from a client. In addition, since they're controlled by a GIOChannel, they can only be processed while the GTK main loop has control (which in the current implementation is all time except when the simulation is running). So the idea is that clients can send stuff to the simulator, and if the simulator is not running, the information is processed and a response is returned to the client. Simulator Sources are for sending unsolicited simulator data to a client. This is a blocking operation, i.e. it will not return until the client has sent a response. Now, the client is responsible for setting Simulator Source Sockets up. So during the socket connection and initialization the client specifies what it wants the simulator to send unsolicited. You might imagine a situation where a plugin module may be receiving data from a script. */ #define SIM_SINK_PORT 0x1234 #define SIM_SOURCE_PORT 0x1235 #define BUFSIZE 8192 //------------------------------------------------------------------------ bool ParseSocketLink(Packet *buffer, SocketLink **); //------------------------------------------------------------------------ //------------------------------------------------------------------------ // class SocketInterface : public Interface { private: Socket *sock; public: virtual void SimulationHasStopped (gpointer object); virtual void Update (gpointer object); virtual ~SocketInterface(); SocketInterface(Socket *); }; //------------------------------------------------------------------------ // Socket wrapper class // // This class is a simple wrapper around the standard BSD socket calls. // class SocketBase { public: SocketBase(SOCKET s); ~SocketBase(); SOCKET getSocket(); void Close(); bool Send(char *); void Service(); void ParseObject(); Packet *packet; private: SOCKET socket; }; //------------------------------------------------------------------------ // Socket class // This class is responsible for listening to clients. // class Socket { public: Socket(); ~Socket(); void init(int port); void AssignChannel(gboolean (*server_func)(GIOChannel *,GIOCondition,void *)); void Close(SocketBase**); void Bind(); void Listen(); SocketBase * Accept(); SocketBase *my_socket; struct sockaddr_in addr; }; class SocketLink { public: SocketLink(unsigned int _handle, SocketBase *); /// Send a response back to the link. /// if the bTimeStamp is true, then the cycle counter is sent too. bool Send(bool bTimeStamp=false); bool Receive(); virtual void set(Packet &)=0; virtual void get(Packet &)=0; unsigned int getHandle() { return handle; } void setBlocking(bool bBlocking) { bWaitForResponse = bBlocking; } bool bBlocking() { return bWaitForResponse; } private: unsigned int handle; SocketBase *parent; bool bWaitForResponse; }; ///======================================================================== /// AttributeLink /// An attribute link is a link associated with a gpsim attribute. /// Clients will establish attribute links by providing the name /// of the gpsim object with which they wish to link. The over head /// for parsing the link name and looking it up in the table only /// has to be done once. class AttributeLink : public SocketLink { public: AttributeLink(unsigned int _handle, SocketBase *, Value *); void set(Packet &); void get(Packet &); Value *getValue() { return v; } private: /// This is a pointer to the gpsim Value object associated with /// this link. Value *v; }; ///======================================================================== /// NotifyLink /// A notify link is a link designed to be a sort of cross reference. It /// is associated with a gpsim attribute in such a way that whenever the /// gpsim attribute changes, the notify link will notify a client socket. class NotifyLink : public Value { public: virtual void set(gint64); NotifyLink(AttributeLink *); private: AttributeLink *sl; }; ///======================================================================== /// CyclicCallBackLink /// A cyclic call back link is a link that periodically sends a message /// to the client. class CyclicCallBackLink : public TriggerObject { public: CyclicCallBackLink(guint64 , SocketBase *); virtual void callback(); virtual void callback_print(void); private: guint64 interval; SocketBase *sb; }; //======================================================================== #define nSOCKET_LINKS 16 SocketLink *links[nSOCKET_LINKS]; AttributeLink *gCreateSocketLink(unsigned int, Packet &, SocketBase *); unsigned int FindFreeHandle() { unsigned int i; static unsigned int sequence = 0; for(i=0; iDecodeUInt32(handle)) { unsigned int index = handle & 0xffff; *sl = links[index&0x0f]; if( (*sl) && (*sl)->getHandle() != handle) *sl = 0; return true; } return false; } //======================================================================== void CloseSocketLink(SocketLink *sl) { if(!sl) return; unsigned int handle = sl->getHandle(); std::cout << " closing link with handle 0x" << hex << handle << endl; if(links[handle&0x000f] == sl) links[handle&0x000f] = 0; } //======================================================================== Socket::Socket() { my_socket = 0; for(int i=0; igetSocket() > 0) { GIOChannel *channel = g_io_channel_unix_new(my_socket->getSocket()); GIOCondition condition = (GIOCondition)(G_IO_IN | G_IO_HUP | G_IO_ERR); #if GLIB_MAJOR_VERSION >= 2 GError *err = NULL; GIOStatus stat; stat = g_io_channel_set_encoding (channel, NULL, &err); #if !defined _WIN32 || defined _DEBUG stat = g_io_channel_set_flags (channel, G_IO_FLAG_SET_MASK, &err); #endif #endif g_io_add_watch(channel, condition, server_function, (void*)this); } } void Socket::Close(SocketBase **sock) { if (sock && *sock) (*sock)->Close(); *sock = 0; } void Socket::Bind() { if(!my_socket) return; if (bind(my_socket->getSocket(), (struct sockaddr *) &addr, sizeof(addr)) != 0) { psocketerror("bind"); } } void Socket::Listen() { if(!my_socket) return; if (listen(my_socket->getSocket(), 5) != 0) { psocketerror("listen"); } } SocketBase *Socket::Accept() { socklen_t addrlen = sizeof(addr); SOCKET client_socket = accept(my_socket->getSocket(),(struct sockaddr *) &addr, &addrlen); if (client_socket == INVALID_SOCKET) { psocketerror("accept"); exit(1); } return new SocketBase(client_socket); } bool SocketBase::Send(char *b) { if(!socket) return false; //std::cout << "Sending sock="<DecodeObjectType(ObjectType)) return; switch (ObjectType) { case GPSIM_CMD_CREATE_SOCKET_LINK: { unsigned int handle = FindFreeHandle(); AttributeLink *sl = gCreateSocketLink(handle, *packet, this); if(sl) { links[handle&0x0f] = sl; packet->EncodeHeader(); packet->EncodeUInt32(handle); packet->txTerminate(); Send(packet->txBuff()); } } break; case GPSIM_CMD_CREATE_NOTIFY_LINK: { unsigned int handle = FindFreeHandle(); AttributeLink *sl = gCreateSocketLink(handle, *packet, this); if(sl) { unsigned int i=0; if(packet->DecodeUInt32(i) && i) sl->setBlocking(true); //NotifyLink *nl = new NotifyLink(sl); links[handle&0x0f] = sl; packet->EncodeHeader(); packet->EncodeUInt32(handle); packet->txTerminate(); Send(packet->txBuff()); } } break; case GPSIM_CMD_CREATE_CALLBACK_LINK: { unsigned int handle = FindFreeHandle(); guint64 interval=0; std::cout << "Creating callback link\n"; if(packet->DecodeUInt64(interval) && interval) { std::cout << "Creating callback link interval=" << interval << endl; //CyclicCallBackLink *cl = new CyclicCallBackLink(interval,this); //links[handle&0x0f] = sl; packet->EncodeHeader(); packet->EncodeUInt32(handle); packet->txTerminate(); Send(packet->txBuff()); } } break; case GPSIM_CMD_REMOVE_SOCKET_LINK: { SocketLink *sl=0; std::cout << "remove socket link command\n"; ParseSocketLink(packet, &sl); if(sl) CloseSocketLink(sl); Send("$"); } break; case GPSIM_CMD_QUERY_SOCKET_LINK: { SocketLink *sl=0; ParseSocketLink(packet, &sl); if(sl) sl->Send(); } break; case GPSIM_CMD_WRITE_TO_SOCKET_LINK: { SocketLink *sl=0; ParseSocketLink(packet, &sl); if(sl) { sl->set(*packet); Send("$"); } } break; case GPSIM_CMD_QUERY_SYMBOL: { char tmp[256]; if(packet->DecodeString(tmp,256)) { Value *sym = get_symbol_table().find(tmp); if(sym) { packet->EncodeHeader(); sym->get(*packet); packet->txTerminate(); Send(packet->txBuff()); } else Send("-"); } } break; case GPSIM_CMD_WRITE_TO_SYMBOL: { // The client has requested to write directly to a symbol // (without using a SocketLink). So, we'll extract the symbol // name from the packet and look it up in the symbol table. // If the symbol is found then, it will get assigned the // value that's stored in the packet. char tmp[256]; if(packet->DecodeString(tmp,256)) { Value *sym = get_symbol_table().find(tmp); if(sym) { // We'll define the response header before we decode // the rest of the packet. The reason for this is that // some symbols may wish to generate a response. packet->EncodeHeader(); sym->set(*packet); packet->txTerminate(); Send(packet->txBuff()); } else Send("-"); } } break; case GPSIM_CMD_RUN: { guint64 nCycles; guint64 startCycle = get_cycles().get(); // Extract from the packet the number of cycles we should run. // If the number of cycles is greater than 0, then we'll set // a cycle breakpoint; otherwise we'll run forever. if(packet->DecodeUInt64(nCycles)) { guint64 fc = startCycle + nCycles; if(nCycles) { get_bp().set_cycle_break(0,fc); } } // Start running... get_interface().start_simulation(); // The simulation has stopped. For the response (to the run // command) we'll send the current value of the cycle counter. // (A client can use this to determine if the break was due to // cycle break set above or to something else). packet->EncodeObjectType(GPSIM_CMD_RUN); packet->EncodeUInt64(get_cycles().get() - startCycle); packet->txTerminate(); Send(packet->txBuff()); } break; case GPSIM_CMD_RESET: get_interface().reset(); Send("-"); break; default: printf("Invalid object type: %d\n",ObjectType); Send("-"); } } //------------------------------------------------------------------------ // Service() // // A client has sent data to gpsim through the socket interface. It is here // where we validate that data and decide how to handle it. void SocketBase::Service() { if(packet->brxHasData()) { // If the data is a 'pure socket command', which is to say it begins // with a header as defined in ../src/protocol.h, then the data // will be further parsed by ParseObject(). If the data has an // invalid header, then we assume that the data is for the command // line and we let the CLI parse_string() function handle it. // FIXME gpsim poorly handles this CLI interface. We should send // the output of the CLI back to the client socket. if (packet->DecodeHeader()) { ParseObject(); } else { if(parse_string(packet->rxBuff()) >= 0) Send("+ACK"); else Send("+BUSY"); } } } //======================================================================== // Socket Interface SocketInterface::SocketInterface(Socket *new_socket) : sock(new_socket) { } void SocketInterface::SimulationHasStopped (gpointer object) { } void SocketInterface::Update (gpointer object) { /* if(sock) sock->Service(); printf("socket update\n"); */ } SocketInterface::~SocketInterface() { /* if(sock) sock->Service(); */ } //======================================================================== SocketLink::SocketLink(unsigned int _handle, SocketBase *sb) : handle(_handle), parent(sb), bWaitForResponse(false) { } bool SocketLink::Send(bool bTimeStamp) { if(parent) { parent->packet->prepare(); parent->packet->EncodeHeader(); get(*parent->packet); if(bTimeStamp) parent->packet->EncodeUInt64(get_cycles().value); parent->packet->txTerminate(); /* std::cout << "SocketLink::Send() " << " socket=" << parent->getSocket() << " sending " << parent->packet->txBuff() << endl; */ if(bWaitForResponse) { //std::cout << "SocketLink::Send waiting for response\n"; if(parent->Send(parent->packet->txBuff())) return Receive(); } else return parent->Send(parent->packet->txBuff()); } return false; } bool SocketLink::Receive() { if(parent) { //cout << "SocketLink is waiting for a client response\n"; parent->packet->prepare(); int bytes= recv(parent->getSocket(), parent->packet->rxBuff(), parent->packet->rxSize(), 0); if (bytes == -1) { perror("recv"); exit(1); } parent->packet->rxTerminate(bytes); /* cout << "SocketLink got client response: " << parent->packet->rxBuff() << endl; */ return true; } return false; } //======================================================================== AttributeLink::AttributeLink(unsigned int _handle, SocketBase *_sb, Value *_v) : SocketLink(_handle,_sb), v(_v) { } void AttributeLink::set(Packet &p) { if(v) v->set(p); } void AttributeLink::get(Packet &p) { if(v) v->get(p); } //======================================================================== NotifyLink::NotifyLink(AttributeLink *_sl) : Value(), sl(_sl) { new_name("notifylink"); std::cout<< "Creating a notify link \n"; if(sl && sl->getValue()) { Value *v = sl->getValue(); std::cout<< "Creating a notify link and asoc with "<< v->name()<getValue()->set_xref(this); } } void NotifyLink::set(gint64 i) { //std::cout << "notify link is sending data back to client\n"; if(sl) sl->Send(true); } //======================================================================== CyclicCallBackLink::CyclicCallBackLink(guint64 i, SocketBase *_sb) : interval(i), sb(_sb) { std::cout << " cyclic callback object\n "; get_cycles().set_break(get_cycles().value + interval, this); } void CyclicCallBackLink::callback(void) { std::cout << " cyclic callback\n "; if(sb) { static bool bfirst = true; static char st[5]; static int seq=0; if(bfirst) { bfirst = false; st[0] = 'h'; st[1] = 'e'; st[2] = 'y'; st[3] = '0'; st[4] = 0; } if(++st[3] > '9') st[3] = '0'; if(sb->Send(st)) get_cycles().set_break(get_cycles().value + interval, this); else std::cout << "socket callback failed seq:" << seq++ << endl; } } void CyclicCallBackLink::callback_print(void) { std::cout << " cyclic callback\n "; } //======================================================================== AttributeLink *gCreateSocketLink(unsigned int handle, Packet &p, SocketBase *sb) { char tmp[256]; if(p.DecodeString(tmp,256)) { Value *sym = get_symbol_table().find(tmp); if(sym) return new AttributeLink(handle,sb,sym); } return 0; } ////////////////////////////////////////////////////////////////////////// #ifdef USE_THREADS_BUT_NOT_RECOMMENDED_BECAUSE_OF_CROSS_PLATFORM_ISSUES void *server_thread(void *ignored) { std::cout << "running....\n"; Socket s; while ( true ) { s.receive(); } return 0; } pthread_t thSocketServer; pthread_attr_t thAttribute; int something=1; void start_server(void) { std::cout << "starting server....\n"; pthread_attr_init(&thAttribute); pthread_attr_setdetachstate(&thAttribute, PTHREAD_CREATE_JOINABLE); pthread_create(&thSocketServer, &thAttribute, server_thread, (void *)&something); std::cout << " started server\n"; } #else // if USE_THREADS #if GLIB_MAJOR_VERSION >= 2 static void debugPrintChannelStatus(GIOStatus stat) { switch (stat) { case G_IO_STATUS_ERROR: std::cout << "G_IO_STATUS_ERROR\n"; break; case G_IO_STATUS_NORMAL: std::cout << "G_IO_STATUS_NORMAL\n"; break; case G_IO_STATUS_EOF: std::cout << "G_IO_STATUS_EOF\n"; break; case G_IO_STATUS_AGAIN: std::cout << "G_IO_STATUS_AGAIN\n"; break; } } #if 0 // defined but not used static void debugPrintCondition(GIOCondition cond) { if(cond & G_IO_IN) std::cout << " G_IO_IN\n"; if(cond & G_IO_OUT) std::cout << " G_IO_OUT\n"; if(cond & G_IO_PRI) std::cout << " G_IO_PRI\n"; if(cond & G_IO_ERR) std::cout << " G_IO_ERR\n"; if(cond & G_IO_HUP) std::cout << " G_IO_HUP\n"; if(cond & G_IO_NVAL) std::cout << " G_IO_NVAL\n"; } #endif #endif /*======================================================================== server_callback () This call back function is invoked from the GTK main loop whenever a client socket has sent something to send to gpsim. This callback will only be invoked for those clients that have already connected to gpsim. Those connected clients have associated with them a 'SocketBase' object. A pointer to that object is passed in the server_callback parameters. This function essentially will respond to the messages that clients send in much the same way the BSD socket command recv() does. Which is to say, the data that the clients send is read from the socket. The actual parsing of the data is done by the routine 'SocketBase::Service()'. */ static gboolean server_callback(GIOChannel *channel, GIOCondition condition, void *pSocketBase ) { SocketBase *s = (SocketBase *)pSocketBase; if(condition & G_IO_HUP) { std::cout<< "client has gone away\n"; #if GLIB_MAJOR_VERSION >= 2 GError *err=NULL; GIOStatus stat = g_io_channel_shutdown(channel, TRUE, &err); std::cout << "channel status " << hex << stat << " " ; debugPrintChannelStatus(stat); #endif delete s; return FALSE; } if(condition & G_IO_IN) { gsize bytes_read=0; s->packet->prepare(); memset(s->packet->rxBuff(), 0, 256); #if GLIB_MAJOR_VERSION >= 2 GError *err=NULL; GIOStatus stat; gsize b; #if !defined _WIN32 || defined _DEBUG g_io_channel_set_flags (channel, G_IO_FLAG_NONBLOCK, &err); #endif stat = g_io_channel_read_chars(channel, s->packet->rxBuff(), s->packet->rxSize(), &b, &err); bytes_read = b; s->packet->rxAdvance(bytes_read); if(err) { std::cout << "GError:" << err->message << endl; } #else g_io_channel_read(channel, s->packet->rxBuff(), BUFSIZE, &bytes_read); #endif if(bytes_read) { if(get_interface().bSimulating()) { std::cout << "setting a socket break point because sim is running \n"; get_bp().set_socket_break(); } else s->Service(); } else return FALSE; return TRUE; } return FALSE; } /*======================================================================== server_accept( ) This call back function is invoked from the GTK loop whenever a client is attempting to establish a socket connection to gpsim. The purpose of this function is to accept a socket connection and to create a GLIB GIOChannel associated with it. This GIOChannel will listen to the client socket and will invoke the server_callback() callback whenever the client sends data. In addition, a new 'SocketBase' object will be created when the connection is accepted. This SocketBase object wraps the BSD socket and provides additional support for simplifying the socket communication. */ static gboolean sink_server_accept(GIOChannel *channel, GIOCondition condition, void *d ) { Socket *s = (Socket *)d; std::cout << " SourceSink accepting new client connect\n"; SocketBase *client = s->Accept(); if(!client) return FALSE; GIOChannel *new_channel = g_io_channel_unix_new(client->getSocket()); GIOCondition new_condition = (GIOCondition)(G_IO_IN | G_IO_HUP | G_IO_ERR); #if GLIB_MAJOR_VERSION >= 2 GError *err = NULL; GIOStatus stat; stat = g_io_channel_set_encoding (channel, NULL, &err); #if !defined _WIN32 || defined _DEBUG //stat = g_io_channel_set_flags (channel, G_IO_FLAG_SET_MASK, &err); stat = g_io_channel_set_flags (channel, G_IO_FLAG_NONBLOCK, &err); #endif #endif g_io_add_watch(new_channel, new_condition, server_callback, (void*)client); return TRUE; } static gboolean source_server_accept(GIOChannel *channel, GIOCondition condition, void *d ) { Socket *s = (Socket *)d; std::cout << " SourceServer accepting new client connect\n"; SocketBase *client = s->Accept(); std::cout << " SourceServer accepted connection\n"; if(!client) return FALSE; int bytes= recv(client->getSocket(), client->packet->rxBuff(), client->packet->rxSize(), 0); std::cout << " SourceServer received data" << client->packet->rxBuff() << endl; if (bytes == -1) { perror("recv"); exit(1); } client->packet->rxAdvance(bytes); client->Service(); std::cout << " SourceServer serviced client\n"; return TRUE; } void start_server(void) { // TestInt32Array *test = new TestInt32Array("test",16); // symbol_table.add(test); std::cout << "starting server....\n"; #ifdef _WIN32 if (!winsockets_init()) { fprintf(stderr, "Could not find a usable WinSock DLL, sockets are disabled.\n"); server_started = false; return; } server_started = true; #endif // Create the Sink and Source servers static Socket sinkServer; sinkServer.init(SIM_SINK_PORT); sinkServer.AssignChannel(sink_server_accept); get_interface().add_interface(new SocketInterface(&sinkServer)); static Socket sourceServer; sourceServer.init(SIM_SOURCE_PORT); sourceServer.AssignChannel(source_server_accept); std::cout << " started server\n"; } void stop_server(void) { #ifdef _WIN32 if (server_started) WSACleanup(); #endif } #endif // if USE_THREADS