/* Copyright (C) 1991, 1992, 1993 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * ANSI Standard: 4.5 MATHEMATICS */ /* * At least this *will* be ANSI, once we have doubles working * in gcc -b saturn-local. */ #ifndef _MATH_H #define _MATH_H #include __BEGIN_DECLS /* Trigonometric functions. */ /* Sine of X. */ extern __CONSTVALUE double sin __P ((double __x)) __CONSTVALUE2; /* Cosine of X. */ extern __CONSTVALUE double cos __P ((double __x)) __CONSTVALUE2; /* Tangent of X. */ extern __CONSTVALUE double tan __P ((double __x)) __CONSTVALUE2; /* Arc sine of X. */ extern __CONSTVALUE double asin __P ((double __x)) __CONSTVALUE2; /* Arc cosine of X. */ extern __CONSTVALUE double acos __P ((double __x)) __CONSTVALUE2; /* Arc tangent of X. */ extern __CONSTVALUE double atan __P ((double __x)) __CONSTVALUE2; /* Arc tangent of X/Y. */ extern __CONSTVALUE double atan2 __P ((double __x, double __y)) __CONSTVALUE2; /* Hyperbolic functions. */ /* Hyperbolic sine of X. */ extern __CONSTVALUE double sinh __P ((double __x)) __CONSTVALUE2; /* Hyperbolic cosine of X. */ extern __CONSTVALUE double cosh __P ((double __x)) __CONSTVALUE2; /* Hyperbolic tangent of X. */ extern __CONSTVALUE double tanh __P ((double __x)) __CONSTVALUE2; /* Hyperbolic arc sine of X. */ extern __CONSTVALUE double asinh __P ((double __x)) __CONSTVALUE2; /* Hyperbolic arc cosine of X. */ extern __CONSTVALUE double acosh __P ((double __x)) __CONSTVALUE2; /* Hyperbolic arc tangent of X. */ extern __CONSTVALUE double atanh __P ((double __x)) __CONSTVALUE2; /* Exponential and logarithmic functions. */ /* Exponential function of X. */ extern __CONSTVALUE double exp __P ((double __x)) __CONSTVALUE2; /* Break X into a normalized fraction and an integral power of 2. */ extern double frexp __P ((double __x, int *__exp)); /* X times (two to the EXP power). */ extern __CONSTVALUE double ldexp __P ((double __x, int __exp)) __CONSTVALUE2; /* Natural logarithm of X. */ extern __CONSTVALUE double log __P ((double __x)) __CONSTVALUE2; /* Base-ten logarithm of X. */ extern __CONSTVALUE double log10 __P ((double __x)) __CONSTVALUE2; /* Return exp(X) - 1. */ extern __CONSTVALUE double expm1 __P ((double __x)) __CONSTVALUE2; /* Return log(1 + X). */ extern __CONSTVALUE double log1p __P ((double __x)) __CONSTVALUE2; /* Break X into a integral and fractional parts. */ extern double modf __P ((double __x, double *__iptr)); /* Power functions. */ /* Return X to the Y power. */ extern __CONSTVALUE double pow __P ((double __x, double __y)) __CONSTVALUE2; /* Return the square root of X. */ extern __CONSTVALUE double sqrt __P ((double __x)) __CONSTVALUE2; /* Return the cube root of X. */ extern __CONSTVALUE double cbrt __P ((double __x)) __CONSTVALUE2; /* Nearest integer, absolute value, and remainder functions. */ /* Smallest integral value not less than X. */ extern __CONSTVALUE double ceil __P ((double __x)) __CONSTVALUE2; /* Absolute value of X. */ extern __CONSTVALUE double fabs __P ((double __x)) __CONSTVALUE2; /* Largest integer not greater than X. */ extern __CONSTVALUE double floor __P ((double __x)) __CONSTVALUE2; /* Floating-point modulo remainder of X/Y. */ extern __CONSTVALUE double fmod __P ((double __x, double __y)) __CONSTVALUE2; /* Return 0 if VALUE is finite or NaN, +1 if it is +Infinity, -1 if it is -Infinity. */ extern __CONSTVALUE int __isinf __P ((double __value)) __CONSTVALUE2; /* Return nonzero if VALUE is not a number. */ extern __CONSTVALUE int __isnan __P ((double __value)) __CONSTVALUE2; /* Return nonzero if VALUE is finite and not NaN. */ extern __CONSTVALUE int __finite __P ((double __value)) __CONSTVALUE2; #ifdef __OPTIMIZE__ #define __finite(value) (!__isinf (value) && !__isnan (value)) #endif /* Deal with infinite or NaN result. If ERROR is ERANGE, result is +Inf; if ERROR is - ERANGE, result is -Inf; otherwise result is NaN. This will set `errno' to either ERANGE or EDOM, and may return an infinity or NaN, or may do something else. */ extern double __infnan __P ((int __error)); /* Return X with its sign changed to Y's. */ extern __CONSTVALUE double __copysign __P ((double __x, double __y)) __CONSTVALUE2; /* Return the nearest X in the direction of the prevailing rounding mode. */ extern __CONSTVALUE double __rint __P ((double __x)) __CONSTVALUE2; extern __CONSTVALUE double rint __P ((double __x)) __CONSTVALUE2; /* Return `sqrt (X*X + Y*Y)'. */ extern __CONSTVALUE double hypot __P ((double __x, double __y)) __CONSTVALUE2; #ifdef __USE_MISC extern __CONSTVALUE int isinf __P ((double __value)) __CONSTVALUE2; extern __CONSTVALUE int isnan __P ((double __value)) __CONSTVALUE2; extern __CONSTVALUE int finite __P ((double __value)) __CONSTVALUE2; extern __CONSTVALUE double infnan __P ((int __error)) __CONSTVALUE2; extern __CONSTVALUE double copysign __P ((double __x, double __y)) __CONSTVALUE2; extern __CONSTVALUE double drem __P ((double __x, double __y)) __CONSTVALUE2; #ifdef __OPTIMIZE__ #define isinf(value) __isinf (value) #define isnan(value) __isnan (value) #define finite(value) __finite (value) #define infnan(value) __infnan (value) #define copysign(value) __copysign (value) #endif /* __OPTIMIZE__*/ #endif /* __USE_MISC */ /* Some other functions not in the GNU C Library. */ /* Return 2 to the X power. */ extern __CONSTVALUE double pow2 __P ((double __x)) __CONSTVALUE2; /* Return 10 to the X power. */ extern __CONSTVALUE double pow10 __P ((double __x)) __CONSTVALUE2; /* Return the error function of X. */ extern __CONSTVALUE double erf __P ((double __x)) __CONSTVALUE2; /* Return the complementary error function of X. */ extern __CONSTVALUE double erfc __P ((double __x)) __CONSTVALUE2; /* Return the Bessel function of X of the first kind of order 0. */ extern __CONSTVALUE double j0 __P ((double __x)) __CONSTVALUE2; /* Return the Bessel function of X of the first kind of order 1. */ extern __CONSTVALUE double j1 __P ((double __x)) __CONSTVALUE2; /* Return the Bessel function of X of the first kind of order N. */ extern __CONSTVALUE double jn __P ((int __n, double __x)) __CONSTVALUE2; /* Return the log of the absolute value of the Gamma function of X. */ extern __CONSTVALUE double lgamma __P ((double __x)) __CONSTVALUE2; /* Return the Bessel function of X of the second kind of order 0. */ extern __CONSTVALUE double y0 __P ((double __x)) __CONSTVALUE2; /* Return the Bessel function of X of the second kind of order 1. */ extern __CONSTVALUE double y1 __P ((double __x)) __CONSTVALUE2; /* Return the Bessel function of X of the second kind of order N. */ extern __CONSTVALUE double yn __P ((int __n, double __x)) __CONSTVALUE2; __END_DECLS extern int signgam; /* Get machine-dependent HUGE_VAL value (returned on overflow). */ #include #include #include #ifndef HUGE #define HUGE FLT_MAX #endif #ifndef HUGE_VAL #define HUGE_VAL FLT_MAX #endif #ifndef M_E #define M_E 2.7182818284590452354 /* e */ #endif #ifndef M_LOG2E #define M_LOG2E 1.4426950408889634074 /* log 2e */ #endif #ifndef M_LOG10E #define M_LOG10E 0.43429448190325182765 /* log 10e */ #endif #ifndef M_LN2 #define M_LN2 0.69314718055994530942 /* log e2 */ #endif #ifndef M_LN10 #define M_LN10 2.30258509299404568402 /* log e10 */ #endif #ifndef M_PI #define M_PI 3.14159265358979323846 /* pi */ #endif #ifndef M_PI_2 #define M_PI_2 1.57079632679489661923 /* pi/2 */ #endif #ifndef M_1_PI #define M_1_PI 0.31830988618379067154 /* 1/pi */ #endif #ifndef M_PI_4 #define M_PI_4 0.78539816339744830962 /* pi/4 */ #endif #ifndef M_2_PI #define M_2_PI 0.63661977236758134308 /* 2/pi */ #endif #ifndef M_2_SQRTPI #define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */ #endif #ifndef M_SQRT2 #define M_SQRT2 1.41421356237309504880 /* sqrt(2) */ #endif #ifndef M_SQRT1_2 #define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */ #endif #ifndef PI #define PI M_PI #endif #ifndef PI2 #define PI2 M_PI_2 #endif #endif /* !_MATH_H */