
INILIB 1.0.7b3

http://inilib.sourceforge.net/

March 14, 2005

Brian Barrett (bwbarrett@users.sourceforge.net)
Jeff Squyres (jsquyres@users.sourceforge.net)

Andrew Lumsdaine (lums@lsc.nd.edu)

Copyright c©2000, University of Notre Dame.
Permission is granted to make and distribute verbatim copies of this manual provided

the copyright notice and this permission notice are preserved on all copies.
Permission is granted to process this file through TEX and/or LATEX and print the results,

provided the printed document carries copying permission notice identical to this one except
for the removal of this paragraph (this paragraph not being relevant to the printed manual).

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided also that the sections entitled “The GNU
Manifesto”, “Distribution” and “GNU General Public License” are included exactly as in
the original, and provided that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that the sections entitled
“The GNU Manifesto”, “Distribution” and “GNU General Public License” may be included
in a translation approved by the Free Software Foundation instead of in the original English.

1

Contents

1 Introduction 5

2 inilib Overview 5

3 Interface 6
3.1 Namespace . 8
3.2 registry Class . 8

3.2.1 Convenience typedefs . 8
3.2.2 Constructors . 9
3.2.3 Destructor . 9
3.2.4 Assignment Operator . 10
3.2.5 operator+= . 10
3.2.6 operator[] . 10
3.2.7 insert . 10
3.2.8 clear . 10
3.2.9 find . 11
3.2.10 empty . 11
3.2.11 begin . 11
3.2.12 end . 11
3.2.13 file read . 11
3.2.14 file write . 11
3.2.15 set filename . 12
3.2.16 get filename . 12
3.2.17 set write on destruct . 12
3.2.18 get write on destruct . 12

3.3 section class . 12
3.3.1 Convenience typedefs . 12
3.3.2 Constructors . 13
3.3.3 Destructor . 13
3.3.4 Assignment Operator . 13
3.3.5 operator+= . 13
3.3.6 operator[] . 13
3.3.7 insert . 13
3.3.8 clear . 13
3.3.9 find . 14
3.3.10 empty . 14
3.3.11 begin . 14
3.3.12 end . 14

3.4 attribute . 14
3.4.1 Type Enumeration . 15
3.4.2 Constructors . 15
3.4.3 Destructors . 15
3.4.4 Assignment Operator . 15
3.4.5 Casting Operator . 15
3.4.6 Other Overloaded Operators . 15
3.4.7 get type . 16
3.4.8 Double Precision Setting . 16

2

4 Implementation 16
4.1 registry and section . 16
4.2 attribute . 16

4.2.1 Data Type Conversion . 17
4.3 Attribute Operator Overloading . 17

4.3.1 Binary Operators . 17
4.3.2 Unary Operators . 18

5 Using inilib 22
5.1 Obtaining inilib . 22
5.2 Installing inilib . 22
5.3 Getting Help . 23
5.4 Coding Standards . 23
5.5 Supported Platforms . 23

3

List of Figures

1 An example file produced by inilib. 5
2 Printing out the last file (file1) opened in the example text editor. 6
3 A sample program loading data from a file. 7
4 Using the iterator typedefs provided by the registry class. 9

List of Tables

1 Member functions in the registry class. 8
2 Member functions in the section class. 12
3 Member functions in the attribute class. 14
4 Conversion behavior in inilib . 17
5 Overloaded operators provided by inilib. 18
6 Behavior of unary operators overloaded in inilib. 19
7 Platform / compiler combinations supported by inilib. 24

4

1 Introduction

inilib is a C++[2] library which provides a convenient mechanism for saving the “state”
of a program in the well-known “.ini file” format used in Microsoft WindowsTM [3]. inilib
gives the programmer a means of storing a number of arbitrary settings in memory with an
easy access interface, as well providing means for saving the information to and loading it
from a file on disk. Data is stored in an easy to read format, allowing the user to modify
any of the information with a simple text editor (i.e., outside the scope of inilib).

inilib benefits the programmer by providing a simple, intuitive means to store any data
that can be expressed in std::string, int, double, or bool types. In addition, inilib
handles any conversions that may be necessary to convert from one type to the other. Saving
all information stored in inilib to disk or loading information from disk requires only one
function call.

inilib provides a hierarchy for access of information, in order to provide the most flexi-
bility for programmers. The top level is called the registry, where each registry corresponds
to one file. Inside of a registry, there are zero or more sections. A section contains zero
or more attributes, each of which actually store the information. Each section is intended
to contain all the information for a particular topic. For example, a text editor program
might have a section for window location and size, and another section containing the last
documents opened by the user. Figure 1 shows a possible .ini file for such a program.

[window settings]
width = 400
height = 500
xpos = 10
ypos = 5

[history]
file1 = /home/bbarrett/document1.txt
file2 = /home/bbarrett/document2.txt
file3 = /home/bbarrett/document3.txt

Figure 1: An example file produced by inilib.

Using the information provided in Figure 1 is simple. An example implementation that
prints out the last file opened (assuming that file1 always points to the last file opened)
is shown in Figure 2. The registry constructor loads the file sample.ini, from Figure 1.
The next line demonstrates accessing a piece of information from inilib. The string in
the first [] gives the section to access, and the string in the second [] specifies which
attribute to return.

2 inilib Overview

The library implements a three-level hierarchy of registry → section → attribute.
A registry contains zero or more sections. A section contains zero or more attributes.
Each attribute is a single (key, value) pair. To avoid name conflicts, the entire inilib
package is in the INI namespace.

The registry is the top-most level of the data structure. It provides methods for
accessing the sections it contains, as well as reading and writing its sections from disk. The
section class provides access to its attributes. Attributes are classes that actually contain
the data to be stored. To access a particular attribute, the programmer would use the
syntax (where section name and attribute name are both of type std::string):

5

#include <iostream>
#include <string>
#include "inilib.h"

using namespace std;

int
main(int argc, char *argv[])
{
// Create the object and read the file
INI::registry information("sample.ini");

// Output a given attribute
cout << information["history"]["file1"] << endl;

return 0;
}

Figure 2: Printing out the last file (file1) opened in the example text editor.

registry_name[section_name][attribute_name]

Attributes can store of the following C/C++ types: double, int, std::string, and
bool. The interface is designed to mimic the STL map [4] as closely as possible.

The registry class provides an interface to the sections stored in the program. Sections
can be added by using operator[]() or insert(), similar to the way a new element is added
to an STL map. operator[]() can be used to retrieve a section. Iterators are provided to
traverse the sections contained in the registry. An STL-like find() function is also provided
to locate a specific section. Finally, file read() and file write() read and write all of
the registry’s sections.

The section class operates in a manner similar to the registry class, with the exception
that it does not contain the file functions found in the registry class.

The attributes, which actually store data for the user, provide interfaces for assignment
(by overloading of operator=()) from any of the C/C++ types bool, double, int, and
std::string. In addition, attributes can be cast to any of these types. The common
unary and binary operators are overloaded for the attribute class in order to remove any
possible compiler ambiguities that might arise. Section 4.3 provides more information on
the overloaded operators.

Figure 3 provides a brief example of the general use of inilib. The program will create
a registry and populate it with the default values for the sample text editor from Section 1.
The file options.ini is then loaded to import the user’s options into the registry. The
program then demonstrates changing an attribute’s value.

Figure 3 also demonstrates the connection between a file and a registry. The constructor
associates the filename user.ini with information, and instructs inilib not to load the
information in user.ini immediately, but to write the registry to user.ini when the
destructor is called. The topic is covered further in Section 3.2.

3 Interface

This section describes the interface provided by inilib.
Many of the methods provided in the inilib package take one of four data types (bool,

6

#include <iostream>
#include <string>
#include "inilib.h"

using namespace std;

int
main(int argc, char *argv[])
{
INI::registry information("user.ini", false, true);

// Provide default values for many of the fields.
information["window settings"]["width"] = 300;
information["window settings"]["height"] = 300;
information["history"]["file1"] = "";
information["history"]["file2"] = "";
information["history"]["file3"] = "";

// Now, load the user’s information
information.file read();

// And pretend the user just changed the screen width
information["window settings"]["width"] = new width;

return 0;
// Note that the registry is written out upon exit

}

Figure 3: A sample program loading data from a file.

double, int and std::string) as an argument. For example, the section.insert() has
four prototypes:

void insert(const std::string& key, bool value);
void insert(const std::string& key, double value);
void insert(const std::string& key, int value);
void insert(const std::string& key, std::string value);

For clarity, since inilib frequently provides overloaded functions for use with any of the
four supported types, the type will be denoted by the Smallcaps font, which denotes one
of the four (int, double, std::string and bool) supported types:

void insert(const std::string& key, Datatype value);

The term “target” is used below to mean the object upon which the member function is
invoked upon. The term “source” typically refers to the argument of the member function.

Additionally, the term “deep copy” is used to denote a copy where all data that is
included in an object is copied to the target. This means that after the copy, there are
two distinct copies of the data (as opposed to two objects that refer to the same underlying
data).

7

3.1 Namespace

All classes, methods, and operators in the inilib library are contained in the INI
namespace.

3.2 registry Class

As described in Section 2, inilib is designed such that all access to data must begin
with an instance of the registry class.

The registry class is directly associated with a filename, which will be used to populate
the registry or save the information in the registry to disk. Constructors are provided
to populate a registry immediately upon creation. In addition, it is possible to have a
registry write itself to disk when its destructor is called.

All of the member functions in the registry class are summarized in Table 1.

Name Purpose
Default constructor Create an empty registry.
Copy constructor Perform a deep copy.
Other constructor Associate a filename with the registry, and option-

ally set read-upon-construction and write-upon-
destruction flags.

Destructor Destroy the registry and all associated data.
operator= Assignment operator; clear the registry and per-

form deep copy.
operator+= Perform a deep copy/append.
operator[] Return a section.
insert Insert a new section.
clear Erase all data in the registry.
find Return an iterator to a section.
empty Return true if there are no sections, false other-

wise.
begin Return iterator to beginning of the registry.
end Return iterator past the end of the registry.
file read Read in a specified (or implied) .ini file.
file write Write out a specific (or implied) .ini file.
set filename Associate a filename with the registry.
get filename Get the filename that is associated with the reg-

istry.
set write on destruct Set whether the registry will be written out upon

destruction.
get write on destruct Get whether the registry will be written out upon

destruction.

Table 1: Member functions in the registry class.

3.2.1 Convenience typedefs

Since the registry class stores its sections in an STL map, iterator access is provided
to traverse all the sections in a registry. To that end, the following typedefs are provided
by the registry class:

• typedef std::map<std::string, section&>::iterator iterator;

• typedef std::map<std::string, section&>::const iterator const iterator

8

These typedefs can be used similar to STL iterators. An example is given in Figure 4.

#include <iostream>
#include <string>
#include "inilib.h"

using namespace std;

int
main(int argc, char *argv[])
{
INI::registry reg("user.ini");
// Populate the registry
reg["window settings"]["width"] = 300;
reg["window settings"]["height"] = 300;
reg["history"]["file1"] = "";
reg["history"]["file2"] = "";
reg["history"]["file3"] = "";

// print out the name of every section in the
// registry.
for (registry::iterator i = reg.begin() ;

i != reg.end() ;
++i)

cout << (*i).first << endl;

return 0;
}

Figure 4: Using the iterator typedefs provided by the registry class.

3.2.2 Constructors

registry()

registry(const registry&)

registry(const std::string& file, bool fileread = true, bool filewrite =
true)

Creates an instance of the registry class. file is a filename to associate with the
instance of registry. If fileread is true, the constructor will call file read(). If
filewrite is true, the contents of the target registry will be written to file when the
destructor is called (Section 3.2.3). The associated filename can be obtained with the
get filename() method (Section 3.2.16) and changed with the set filename() method
(Section 3.2.15). The behavior of the write on destruct option can also be controlled with
get write on destruct() (Section 3.2.18) and set write on destruct() methods (Sec-
tion 3.2.17).

3.2.3 Destructor

~registry()

9

Eliminates the instance of the registry class. All sections and attributes associated
with the particular registry are destroyed as well. If get write on destruct() returns
true, the contents of the target registry will be saved to disk before the instance is deleted.

If the write fails, no notification will be given to the user.

3.2.4 Assignment Operator

registry& operator=(const registry& r)

Assigns r to the target registry. This function first deletes all information in the target
registry, and makes a deep copy of the information from r, including the value of the
write on destruct tag, into the registry.

A reference to the target registry is returned.

3.2.5 operator+=

registry& operator+=(const registry& r)

Adds the information from r to the target registry. If a section in r does not exist in
the target registry, the section will be deep copied into the target (including all attributes
in r). The value of the write on destruct tag will not be copied from r.

If a section in r already exists in the target registry, all attributes from the section in
r will be deep copied into the section in the registry. If an attribute in the registry exists
already, the attribute in r will overwrite it.

A reference to the target registry is returned.

3.2.6 operator[]

section& operator[](const std::string& key)

Returns section referenced by key key from the registry. If the key key does not already
exist in the registry, an empty section is created, stored in the registry (which can be accessed
in the future by the key key), and a reference to it is returned.

3.2.7 insert

void insert(const std::string& key, const section& sec)

void insert(const registry& r)

Inserts information into the target registry by deep copying the source information.
If r is passed to the function, insert works in the same way as operator+= (see Sec-

tion 3.2.5).
If key, sec are passed to the function, insert adds the section’s information to the

target registry. If key does not exist in the registry, it will be created. If it does exist, all
attributes will be copied into the existing section. If a section already exists with key key,
section::operator+= (Section 3.3.5) is used to combine the two sections.

3.2.8 clear

void clear()

Removes all information from the registry. All sections (and all attributes in each section)
are deleted.

10

3.2.9 find

iterator find(const std::string& key)

Returns an iterator pointing to a (name, section) pair with name key. The section name
is the first element of the pair, and is a std::string; the second element of the pair is a
reference to the section of that name. If there is no section in the registry with the name
key, an iterator equal to registry::end() (see Section 3.2.12) is returned.

3.2.10 empty

bool empty()

Returns true if there are no sections in the target registry, false otherwise.

3.2.11 begin

iterator begin()

Returns the iterator returned by the underlying std::map’s begin() function. The
iterator points to (name, section) pairs, as described in the find() function (Section 3.2.9).

3.2.12 end

iterator end()

Returns the iterator returned by the underlying std::map’s end() function.

3.2.13 file read

bool file read()

bool file read(const std::string& filename)

If no argument is provided, attempts to read the file associated with the target registry,
either through the constructors (Section 3.2.2) or set filename() (Section 3.2.15).

If an argument is provided, populates the registry with data found in the specified file.
In both cases, information from the file is appended to the target registry. Any attributes

contained in both the registry and the file will be overwritten with the values from the file.
If a section is not already in the target registry, it will be added to the target registry.
Likewise, if an attribute is not already in the registry, it will be added. See Section 2 for an
in-depth explanation of the underlying implementation of attributes.

Returns true on success, false otherwise.

3.2.14 file write

bool file write()

bool file write(const std::string& filename)

If no argument is provided, attempt to write to the filename associated with the target
registry (either through the constructors (Section 3.2.2) or set filename() (Section 3.2.15).

If the filename argument is provided, output the data contained in the registry to the
specified file. Any information already in the file will be overwritten.

Returns true on success, false otherwise.

11

3.2.15 set filename

void set filename(const std::string& name)

Changes the filename associated with the target registry to name.

3.2.16 get filename

std::string get filename()

Returns a string containing the filename currently associated with the target registry.

3.2.17 set write on destruct()

void set write on destruct(bool value)

If value is true, the target registry will attempt to write itself to the file associated with
it upon destruction. If value is false, it will not attempt to write itself on destruction.

3.2.18 get write on destruct()

bool get write on destruct()

Returns true if the target registry will attempt to write itself to the file associated with
it upon destruction. Returns false otherwise.

3.3 section class

The section class is designed to be contained in a registry. It contains attributes, which
are the actual data stored in a registry. Table 2 summarizes the function members of the
section class.

Name Purpose
Default constructor Create an empty section.
Copy constructor Perform a deep copy.
Destructor Destroy the section and all associated data.
operator= Assignment operator; clear the section and per-

form deep copy.
operator+= Perform a deep copy/append.
operator[] Return a section.
insert Insert a new section.
clear Erase all data in the section.
find Return an iterator to a attribute.
empty Return true if there are no attributes, false oth-

erwise.
begin Return iterator to beginning of the section.
end Return iterator past the end of the section.

Table 2: Member functions in the section class.

3.3.1 Convenience typedefs

Since the section class stores its attributes in an STL map, iterator access is provided to
traverse all the attributes in a section. To that end, the following typedefs are provided by
the section class:
std::map<std::string, attribute&>::iterator iterator

12

std::map<std::string, attribute&>::const iterator const iterator

3.3.2 Constructors

section()

section(const section& s)

Creates an instance of the section class. If a section s is given, s is deep copied (along
with all attributes in s) into the target section.

3.3.3 Destructor

~section()

Eliminates the instance of the section class. All attributes in the section will be
destroyed as well.

3.3.4 Assignment Operator

section& operator=(const section& s)

Deep copies section s. All attributes in the target section before calling operator= are
deleted from the section. Copies of all attributes in section s are added to the target section.

3.3.5 operator+=

section& operator+=(const section& s)

Deep copies section s. All attributes in the section before calling operator+= are kept
in the section. In the event that there is an attribute in s with the same key as an attribute
in this, the attribute in s will overwrite the current attribute.

3.3.6 operator[]

attribute& operator[](const std::string& key)

Returns the attribute with key key. If no such attribute exists in the section, a default
attribute is returned (see Section 4.2).

3.3.7 insert

void insert(const std::string& key, Datatype value)

void insert(const section& sec)

When insert is called with parameter sec, insert acts like operator+= (see Sec-
tion 3.3.5).

When insert is called with parameters key and value, the attribute is added to the
target section. If an attribute with key key already exists, it is overwritten.

3.3.8 clear

void clear()

Removes all information from the section. All attributes are deleted.

13

3.3.9 find

iterator find(const std::string& key)

Returns an iterator pointing to the (name, attribute) pair with name key. The attribute
name is the first element of the pair, and is a std::string; the second element of the
pair is a reference to the attribute of that name. If there is no attribute in the section
with the name key, an iterator equal to section::end() (see Section 3.3.12) is returned.

3.3.10 empty

bool empty()

Returns true if there are no attributes in the target section. Returns false otherwise.

3.3.11 begin

iterator begin()

Returns the iterator returned by the underlying std::map’s begin() function. The
iterator points to (name, attribute) pairs, as described in the find() function (Section 3.2.9).

3.3.12 end

iterator end()

Returns the iterator returned by the underlying std::map’s end() function.

3.4 attribute Class

The attribute class is a base class from which four classes are derived (see Section 4.2).
The constructors and destructors will rarely be used directly by the programmer – the
registry and section classes are intended to act as the primary interface to attributes.

Table 3 summarizes the members functions on the attribute class.

Name Purpose
Default constructor Create an empty attribute.
Copy constructor Perform a deep copy.
Datatype constructor Intializer constructor.
Destructor Destroy the section and all associated data.
operator= Assignment operator; clear the section and per-

form deep copy.
Casting operators Convert the attribute to an bool, int, double, or

string.
Unary operators As appropriate (see Section 4.3).
get type Return an enum indicating the underlying at-

tribute’s real type.
get precision Get the precision that will be used to convert dou-

bles to strings.
set precision Set the precision that will be used to convert dou-

bles to strings.

Table 3: Member functions in the attribute class.

14

3.4.1 Type Enumeration

Each attribute has a type associated with it. The get type() function (see Section 3.4.7)
can be used to determine the type of an attribute. The following enumeration is used to
determine type:

enum attr type {BOOL, DOUBLE, INT, STRING, NONE};

3.4.2 Constructors

attribute()

attribute(attribute*)

attribute(const attribute&)

attribute(Datatype value)

Creates an attribute. For each of the four attribute types, value can only be the same
type as the attribute. For example, bool attribute only has a constructor with value of
type bool.

3.4.3 Destructors

~attribute()

Destroys the attribute, freeing any memory associated with it. wrap attributes also
destroy the underlying attribute, if any (See Section 4.2).

3.4.4 Assignment Operator

attribute& operator=(Datatype value)

Assigns value to the attribute. For more information on how conversions are handled
by inilib, see Section 4.2.1. value will be cast to the type of the underlying attribute,
which may cause a loss of data (such as assigning a double to any of the other three data
types). The precision of a double assigned to a std::string can be modified using the
set precision() and get precision() methods (Section 3.4.8).

3.4.5 Casting Operator

operator Datatype()

Casts the value of the attribute to the specified type. However, with operator=(),
certain casts can cause a loss of data (such as casting a double to an int). Form more
information on how conversions are handled during casting, see Section 4.2.1.

As the casting operator is defined for int, double, bool, and std::string, compiler
ambiguities can arise when using attributes for many common operations (operator==(),
for instance). To avoid the problem of compiler ambiguities that arise because of the
operator=() being overloaded, many of the operators have been overloaded for the at-
tribute classes. More information is available in Section 4.3.

3.4.6 Other Overloaded Operators

In order to eliminate compiler ambiguities, many of the overloadable C++ operators are
overloaded for the attribute classes. See Section 4.3 for more information.

15

3.4.7 get type

attr type get type()

Returns the underlying type of the attribute. If the attribute is a wrap attribute, the
result will be the type of the underlying attribute. If an attribute has not yet been assigned
a type, NONE is returned.

3.4.8 Double Precision Setting

int attribute::get precision()

void attribute::set precision(int precision)

Certain functions require that a double be assigned or cast to a std::string. The
set precision() function is used to set the number of significant figures that will be stored
after the conversion. The get precision() function allows access to the current precision
for the conversion. Both functions are static to the attribute class, meaning that the
precision level is for the entire class, not specific instances.

precision should be no higher than 100. If precision is higher than 100, it will
automatically be reduced to 100 without warning. The result of get precision() in this
case will be 100.

4 Implementation

4.1 registry and section

The registry and section classes each contain an STL map with (std::string) type
for keys and values of type (section*) and (attribute*), respectively. The operator[](),
insert(), and clear() functions provided by registry and section perform error check-
ing then call the corresponding map functions. All functions in the two classes, except for the
file access functions file read() and file write(), are inlined to increase the performance
of the library.

4.2 attribute

The implementation of attributes is slightly more interesting than that of the registry
and section. There is a base class, attribute, from which five other classes are derived:

1. bool attribute

2. double attribute

3. int attribute

4. string attribute

The four derived classes, bool attribute, double attribute, int attribute, and
string attribute (page 14), are very similar. They provide casting operators to bool,
double, int, and std::string, as well as operator=() from these four types. This al-
lows the seamless assignment and casting of any attribute type to any other attribute type,
similar to the Perl [5] and PHP [1] scripting languages.

The attribute class is used in situations where the type of the attribute is not known at
the time the attribute is created, for the return type of many of the overloaded operators,
and for storage in the section class. The attribute class provides the same interface as
the four classes that derive from it. However, instead of containing an actual data value, the
attribute class contains a pointer to one of the other four classes. The interaction between
the attribute class and the derived classes is completely transparent to the programmer.

16

Casting from
Casting to bool double int std::string

bool NA (bool) value (bool) value false if string
is empty, true
otherwise.

double (double)
value

NA (double)
value

atof(value)

int (int) value (int) value NA atoi(value)
std::string “true” if

value is true,
empty string
otherwise

sprintf(ret,
‘‘%.Preci-
sionlf’’,
value)

sprintf(ret,
‘‘%.Preci-
sionlf’’,
value)

NA

Table 4: Conversion behavior in inilib

The library is intended to be used in a situation where the programmer provides a
set of default attributes and values within the program. When reading attributes from a
file, entries from the file override the values in memory. However, the file value’s type is
assumed to be the same as the attribute in the memory. If an attribute exists in the file
being loaded, but is not already in memory, the parser must make a best-guess as to the
type of attribute to create. If the value is whitespace, followed by an optional + or -,
a series decimal digits, a decimal point, then a series of decimal digits, followed by any
amount of whitespace, inilib will consider the value to be of type double. If the value is
any amount of whitespace, followed by one or more decimal digits, followed by any amount
of whitespace, inilib will consider the value to be of type int. Otherwise, inilib will
consider the value to be of type std::string.

4.2.1 Data Type Conversion

Whenever possible, conversion from one data type to another is handled by casting to
the desired data type. For example, the conversion between from an int to bool is handled
by calling (bool) value. In certain circumstances, a cast will not produce the desired
result, such as casting a std::string to a double. Table 4 details the conversions used in
inilib.

4.3 Attribute Operator Overloading

Due to the overloading of casting operators for the attribute classes (allowing an attribute
to be cast to one of bool, double, int, or std::string), compiler ambiguities can arise.
Two solutions to the problem of compiler ambiguties exist. The first is to require the
programmer to explicitly cast the attribute in any operation that may result in a compiler
ambiguity. This option requires more work for the programmer, which is not what a library
should do. The second option is to overload the most common operators for the attribute
class, eliminating any compiler ambiguities that may arise. The second option is obviously
a better solution for the programmer, and is therefore implemented in inilib. Table 5
provides a listing of the operators overloaded in inilib.

4.3.1 Binary Operators

The overloaded binary operators fall into two categories: attribute/Datatype func-
tions and attribute/attribute functions. The attribute/Datatype functions will cast
the attribute to the same type as the other argument and then perform the operation.

The attribute/attribute binary operators do not have an implied type to cast to, as
an attribute can be cast to any one of bool, double, int, or std::string. Therefore, the

17

pre increment ++lvalue
pre decrement --lvalue
not !expr
unary minus -expr
multiply expr * expr
divide expr / expr
modulo expr % expr
add (plus) expr + expr
subtract (minus) expr - expr
less than expr < expr
less than or equal expr <= expr
greater than expr > expr
greater than or equal expr >= expr
equal expr == expr
not equal expr != expr
multiply and assign lvalue *= expr
divide and assign lvalue /= expr
module and assign lvalue %= expr
add and assign lvalue += expr
subtract and assign lvalue -= expr

Table 5: Overloaded operators provided by inilib.

attribute/attribute functions use the following hierarchy for casting (listed from lowest
to highest):

1. std::string

2. bool

3. int

4. double

The attribute with the higher type acording to the hierarchy will be cast to the
type of the other attribute. For example, if the comparison operator is called on a
string attribute and double attribute, the casting operator will be used to cast both
attributes to type double, then the operation will be performed. Although an arbitrary
hierarchy, it is used because it is similar to the one used by Perl and PHP to control casting
from one type to another.

The attribute/attribute binary arithmetic operators create a temporary attribute
of the appropriate type (as discussed in the previous paragraph) and use the arithmentic
operation and assign member functions to perform the arithmetic operation. Therefore, the
behavior of the attribute/attribute binary arithmetic operators is determined by the
operation of the member arithmetic operation.

4.3.2 Unary Operators

The unary operators are all member functions of the attribute class. Some of the
unary operators (pre increment, for instance), are not defined in C/C++ for some data
types (double, in the case of the pre increment operator). However it would be inconvienent
not to have the operators defined for all four types used by inilib. Table 6 describes the

18

result of many unary operators when called on an attribute. The action of these operators
is intended to mimic Perl and PHP as closely as possible.1

The post-increment and post-decrement operators are not provided, as it is not possible
to return an object of type attribute, which would be required for the post-increment and
post-decrement operators.

Table 6: Behavior of unary operators overloaded in inilib.

attribute type
bool double int std::string

pre increment sets the value
of the at-
tribute to
true and
returns the
new value

adds 1 to the
value of the
attribute and
returns the
new value

adds 1 to the
value of the
attribute and
returns the
new value

If the value of the at-
tibute is an int or dou-
ble,2 the value is cast
to that type and 1
is added to the value.
The result is converted
back to a string. The
resulting string is as-
signed to the attribute
and returned.

pre decre-
ment

sets the value
of the at-
tribute to
false and
returns the
new value

subtracts
1 from the
value of the
attribute and
returns the
new value

subtracts
1 from the
value of the
attribute and
returns the
new value

if the value of the at-
tibute is an int or dou-
ble, the value is cast to
that type and 1 is sub-
tracted from the value.
The result is converted
back to a string. The
resulting string is as-
signed to the attribute
and returned.

not returns true
if value is
false, re-
turns false
if the value is
true

returns true
if the value
is 0, returns
false other-
wise

returns true
if the value is
0, false oth-
erwise

returns true if the
string is empty, false
otherwise

unary minus same as not returns value,
but with sign
reversed

returns value,
but with sign
reversed

if the string contains
only a number (integer
or decimal), returns the
value as a string, but
with a ‘-’ prepended.
Otherwise, returns the
current value

continued . . .

1The one exception is integer and string addition. The incrementing of the alphanumerical string is not
supported in inilib

2Meaning it contains a string of the form dddd or ddd.ddd, where d is a decimal digit, with an arbitrary
number of digits.

19

Table 6: (cont.)

bool double int std::string
multiply and
assign

casts argu-
ment to bool
and performs
a logical and,
returning the
result and as-
signing it to
the attribute

casts ar-
gument to
int and
multiplies,
returning the
result and as-
signing it to
the attribute

casts ar-
gument to
double and
multiplies,
returning the
result and as-
signing it to
the attribute

If the argument is a
bool, double, or int,
casts attribute to that
type and performs the
multiplication. The re-
sult is converted back
to a string, returned,
and assigned to the at-
tribute. If the argu-
ment is a string, the
std::string’s + oper-
ator is used. If the ar-
gument is an attribute,
the action is as above,
based on the underly-
ing type.

divide and as-
sign

casts argu-
ment to bool
and performs
a logical or,
returning the
result and as-
signing it to
the attribute

casts argu-
ment to int
and divides,
returning the
result and as-
signing it to
the attribute

casts ar-
gument to
double and
divides, re-
turning the
result and as-
signing it to
the attribute

If the argument is a
bool, double, or int,
casts attribute to that
type and performs the
division. The result
is converted back to a
string, returned, and
assigned to the at-
tribute. If the argu-
ment is a string, the op-
eration returns the cur-
rent string. If the ar-
gument is an attribute,
the action is as above,
based on the underly-
ing type.

continued . . .

20

Table 6: (cont.)

bool double int std::string
modulo and
assign

casts argu-
ment to bool
and performs
a logical and,
returning the
result and as-
signing it to
the attribute

casts argu-
ment to int
and performs
modulo
operation,
returning the
result and
assining it to
the attribute.

casts argu-
ment and
value to int
and performs
modulo oper-
ation. Result
is cast back
to a double

If the argument is a
bool, double, or int,
casts attribute to that
type and performs the
modulo, using the rules
specified for the bool,
double, and int at-
tributes. The result
is converted back to a
string, returned, and
assigned to the at-
tribute. If the argu-
ment is a string, the op-
eration returns the cur-
rent string. If the ar-
gument is an attribute,
the action is as above,
based on the underly-
ing type.

add and as-
sign

casts argu-
ment to bool
and performs
a logical or,
returning the
reuslt and as-
signing it to
the attribute

casts argu-
ment to int
and adds,
returning the
result and as-
signing it to
the attribute

casts ar-
gument to
double and
adds, return-
ing the result
and assigning
it to the
attribute

If the argument is a
bool, double, or int,
casts attribute to that
type and performs the
addition. The re-
sult is converted back
to a string, returned,
and assigned to the at-
tribute. If the argu-
ment is a string, the op-
eration returns the cur-
rent string. If the ar-
gument is an attribute,
the action is as above,
based on the underly-
ing type.

continued . . .

21

Table 6: (cont.)

bool double int std::string
subtract and
assign

casts argu-
ment to bool
and performs
a logical and,
returing the
result and as-
signing it to
the attribute

casts ar-
gument to
int and
subtracts,
returning the
result and as-
signing it to
the attribute

casts ar-
gument to
double and
subtracts,
returning the
result and as-
signing it to
the attribute

If the argument is a
bool, double, or int,
casts attribute to that
type and performs the
subtraction. The re-
sult is converted back
to a string, returned,
and assigned to the at-
tribute. If the argu-
ment is a string, the op-
eration returns the cur-
rent string. If the ar-
gument is an attribute,
the action is as above,
based on the underly-
ing type.

5 Using inilib

This section contains information on obtaining inilib, installing it, and getting help if
something goes wrong. In addition, this section describes the coding standards maintained
in the creation of inilib.

5.1 Obtaining inilib

The source code for inilib is available from the project’s homepage:

http://inilib.sourceforge.net/

Packages containing the official, supported releases are available from the web page, as
well as CVS access for the most current code. The CVS code – unless otherwise noted –
should be considered unstable, and may not function as intended, and may therefore break
your applications.

The official inilib distribution contains the source code in src/, as well as a com-
prehensive test suite that can be found at contrib/test suite/ and usage examples in
contrib/examples/. The test suite is discussed in Section 5.4. The usage examples con-
tain extensive comments on the usage of inilib. In addition, the documentation for inilib
is available in the doc/ directory of the distribution and on the project’s home page.

5.2 Installing inilib

inilib uses the GNU autoconf and automake utilities to create a build process that
works across all tested platforms. In addition, it may work on platforms that are not tested
or supported. For most cases, the build process is as simple as:

% ./configure
% make
% make examples
% cd contrib/test_suite ; ./inilib_test ; cd ../..
% make install

22

The make examples and ./inilib test steps are optional, but it is recommended you
use them. For file access reasons, you must be in the same directory as the inilib test
binary and test.ini file in order to run the test suite.

C++ does not enjoy the same standard methodology of building static libraries across
different platforms and compilers like C does. Indeed, for C libraries, the use of ar(1)
and (sometimes) ranlib(1) is all that is required. However, C++ functions (particularly
where templates are involved) may require multiple passes from the compiler before a usable
library can be produced. There is currently no uniform manner to produce C++ libraries
across platforms/compilers. It is hoped that the next release of the GNU libtool project
will address this issue. Until then, only the platforms and compilers listed in Table 7 are
supported for use with inilib.

If your compiler is not listed, it is quite possible that your it will work properly with
inilib – it should be a fairly straightforward task to modify configure.in for the right
library compilation hooks for your C++ compiler.

5.3 Getting Help

Thanks to SourceForge, bug tracking and reporting software and mailing lists are avail-
able from the inilib homepage. The authors of inilib are Brian Barrett and Jeff Squyres.
To contact the authors about a problem with inilib, please use the support listserv,
inilib-support@lists.sourceforge.net.

There is also a development list, inlib-devel@lists.sourceforge.net.

5.4 Coding Standards

inilib was developed under a fairly stringent set of standards that should ensure proper
functionality.

The primary development environment for inilib is Sun Solaris 2.6 (UltraSparc) using
the Sun Workshop 5.0 compilers. All releases are verified to be free of memory leaks,3 using
bcheck, a memory checker that is part of the Workshop compiler suite.

In addition to being free of memory leaks, inilib releases will compile without warn-
ings on all supported platforms using all supported compilers. GNU extenstions and non-
standard extensions to the STL will not be used, to increase portability.

A comprehensive test suite is included with the inilib source. It can be found in the
contrib/test suite directory. This test suite is intended to test the entire inilib product
for proper functionality. All releases canidates will be verified using the test suite on all
supported platform/compiler combinations (See Section 5.5) before being released.

5.5 Supported Platforms

Table 7 shows the platform/compiler combinations have been tested and are supported
by inilib. Other platforms may work, but may require some modifications to the build
script. g++ 2.95.2 may provide the easiest porting, as its C++ library build process is the
same as the standard C library build process.

3Free from avoidable memory leaks. The Workshop 5.0 STL implementation has a few small memory
leaks in the iostream implementation, so bcheck will find some memory leaks in inilib.

23

Platform Compiler
Solaris 2.6 (Sparc) Workshop 5.0 CC

KCC 3.4f
g++ 2.95.2

Solaris 7 (Sparc) Workshop 5.0 CC
KCC 3.4f
g++ 2.95.2

x86 Linux (RedHat 6.2) KCC 3.4f
g++ 2.95.2

MIPS Irix Irix CC
KCC 3.4f
g++ 2.95.2

Table 7: Platform / compiler combinations supported by inilib.

24

References

[1] PHP. http://www.php.net/.

[2] C++ Forum. ANSI/ISO standard, programming language C++. Technical report,
American National Standards Institute, 1998.

[3] Microsoft. Microsoft WindowsTM . http://www.microsoft.com/.

[4] SGI Inc. Standard Template Library Programmer’s Guide.
http://www.sgi.com/Technology/STL/, 1996.

[5] Larry Wall. Perl. http://www.perl.com/.

25

	Introduction
	inilib Overview
	Interface
	Namespace
	registry Class
	Convenience typedefs
	Constructors
	Destructor
	Assignment Operator
	operator+=
	operator[]
	insert
	clear
	find
	empty
	begin
	end
	file_read
	file_write
	set_filename
	get_filename
	set_write_on_destruct
	get_write_on_destruct

	section class
	Convenience typedefs
	Constructors
	Destructor
	Assignment Operator
	operator+=
	operator[]
	insert
	clear
	find
	empty
	begin
	end

	attribute
	Type Enumeration
	Constructors
	Destructors
	Assignment Operator
	Casting Operator
	Other Overloaded Operators
	get_type
	Double Precision Setting

	Implementation
	registry and section
	attribute
	Data Type Conversion

	Attribute Operator Overloading
	Binary Operators
	Unary Operators

	Using inilib
	Obtaining inilib
	Installing inilib
	Getting Help
	Coding Standards
	Supported Platforms

