(**************************************************************************) (* *) (* Menhir *) (* *) (* François Pottier and Yann Régis-Gianas, INRIA Rocquencourt *) (* *) (* Copyright 2005 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the Q Public License version 1.0, with the *) (* change described in file LICENSE. *) (* *) (**************************************************************************) (* This is a stripped down version of [GSet] that describes both [Patricia] and [CompressedBitSet]. The full version of [GSet] is in [AlphaLib]. *) module type S = sig (* Elements are assumed to have a natural total order. *) type element (* Sets. *) type t (* The empty set. *) val empty: t (* [is_empty s] tells whether [s] is the empty set. *) val is_empty: t -> bool (* [singleton x] returns a singleton set containing [x] as its only element. *) val singleton: element -> t (* [cardinal s] returns the cardinal of [s]. *) val cardinal: t -> int (* [choose s] returns an arbitrarily chosen element of [s], if [s] is nonempty, and raises [Not_found] otherwise. *) val choose: t -> element (* [mem x s] returns [true] if and only if [x] appears in the set [s]. *) val mem: element -> t -> bool (* [add x s] returns a set whose elements are all elements of [s], plus [x]. *) val add: element -> t -> t (* [remove x s] returns a set whose elements are all elements of [s], except [x]. *) val remove: element -> t -> t (* [union s1 s2] returns the union of the sets [s1] and [s2]. *) val union: t -> t -> t (* [inter s t] returns the set intersection of [s] and [t], that is, $s\cap t$. *) val inter: t -> t -> t (* [disjoint s1 s2] returns [true] if and only if the sets [s1] and [s2] are disjoint, i.e. iff their intersection is empty. *) val disjoint: t -> t -> bool (* [iter f s] invokes [f x], in turn, for each element [x] of the set [s]. Elements are presented to [f] in increasing order. *) val iter: (element -> unit) -> t -> unit (* [fold f s seed] invokes [f x accu], in turn, for each element [x] of the set [s]. Elements are presented to [f] in increasing order. The initial value of [accu] is [seed]; then, at each new call, its value is the value returned by the previous invocation of [f]. The value returned by [fold] is the final value of [accu]. In other words, if $s = \{ x_1, x_2, \ldots, x_n \}$, where $x_1 < x_2 < \ldots < x_n$, then [fold f s seed] computes $([f]\,x_n\,\ldots\,([f]\,x_2\,([f]\,x_1\,[seed]))\ldots)$. *) val fold: (element -> 'b -> 'b) -> t -> 'b -> 'b (* [elements s] is a list of all elements in the set [s]. *) val elements: t -> element list (* [compare] is an ordering over sets. *) val compare: t -> t -> int (* [equal] implements equality over sets. *) val equal: t -> t -> bool (* [subset] implements the subset predicate over sets. *) val subset: (t -> t -> bool) end