/*************************************************
* RSA Source File *
* (C) 1999-2007 The Botan Project *
*************************************************/
#include <botan/rsa.h>
#include <botan/numthry.h>
#include <botan/keypair.h>
#include <botan/parsing.h>
namespace Botan {
/*************************************************
* RSA_PublicKey Constructor *
*************************************************/
RSA_PublicKey::RSA_PublicKey(const BigInt& mod, const BigInt& exp)
{
n = mod;
e = exp;
X509_load_hook();
}
/*************************************************
* RSA Public Operation *
*************************************************/
BigInt RSA_PublicKey::public_op(const BigInt& i) const
{
if(i >= n)
throw Invalid_Argument(algo_name() + "::public_op: input is too large");
return core.public_op(i);
}
/*************************************************
* RSA Encryption Function *
*************************************************/
SecureVector<byte> RSA_PublicKey::encrypt(const byte in[], u32bit len) const
{
BigInt i(in, len);
return BigInt::encode_1363(public_op(i), n.bytes());
}
/*************************************************
* RSA Verification Function *
*************************************************/
SecureVector<byte> RSA_PublicKey::verify(const byte in[], u32bit len) const
{
BigInt i(in, len);
return BigInt::encode(public_op(i));
}
/*************************************************
* Create a RSA private key *
*************************************************/
RSA_PrivateKey::RSA_PrivateKey(u32bit bits, u32bit exp)
{
if(bits < 128)
throw Invalid_Argument(algo_name() + ": Can't make a key that is only " +
to_string(bits) + " bits long");
if(exp < 3 || exp % 2 == 0)
throw Invalid_Argument(algo_name() + ": Invalid encryption exponent");
e = exp;
p = random_prime((bits + 1) / 2, e);
q = random_prime(bits - p.bits(), e);
d = inverse_mod(e, lcm(p - 1, q - 1));
PKCS8_load_hook(true);
if(n.bits() != bits)
throw Self_Test_Failure(algo_name() + " private key generation failed");
}
/*************************************************
* RSA_PrivateKey Constructor *
*************************************************/
RSA_PrivateKey::RSA_PrivateKey(const BigInt& prime1, const BigInt& prime2,
const BigInt& exp, const BigInt& d_exp,
const BigInt& mod)
{
p = prime1;
q = prime2;
e = exp;
d = d_exp;
n = mod;
if(d == 0)
d = inverse_mod(e, lcm(p - 1, q - 1));
PKCS8_load_hook();
}
/*************************************************
* RSA Private Operation *
*************************************************/
BigInt RSA_PrivateKey::private_op(const byte in[], u32bit length) const
{
BigInt i(in, length);
if(i >= n)
throw Invalid_Argument(algo_name() + "::private_op: input is too large");
BigInt r = core.private_op(i);
if(i != public_op(r))
throw Self_Test_Failure(algo_name() + " private operation check failed");
return r;
}
/*************************************************
* RSA Decryption Operation *
*************************************************/
SecureVector<byte> RSA_PrivateKey::decrypt(const byte in[], u32bit len) const
{
return BigInt::encode(private_op(in, len));
}
/*************************************************
* RSA Signature Operation *
*************************************************/
SecureVector<byte> RSA_PrivateKey::sign(const byte in[], u32bit len) const
{
return BigInt::encode_1363(private_op(in, len), n.bytes());
}
/*************************************************
* Check Private RSA Parameters *
*************************************************/
bool RSA_PrivateKey::check_key(bool strong) const
{
if(!IF_Scheme_PrivateKey::check_key(strong))
return false;
if(!strong)
return true;
if((e * d) % lcm(p - 1, q - 1) != 1)
return false;
try {
KeyPair::check_key(get_pk_encryptor(*this, "EME1(SHA-1)"),
get_pk_decryptor(*this, "EME1(SHA-1)")
);
KeyPair::check_key(get_pk_signer(*this, "EMSA4(SHA-1)"),
get_pk_verifier(*this, "EMSA4(SHA-1)")
);
}
catch(Self_Test_Failure)
{
return false;
}
return true;
}
}
syntax highlighted by Code2HTML, v. 0.9.1