#!/usr/bin/env python """ An example using networkx.XGraph(). miles_graph() returns an undirected graph over the 128 US cities from the datafile miles.dat. The cities each have location and population data. The edges are labeled with the distance betwen the two cities. This example is described in Section 1.1 in Knuth's book [1,2]. References. ----------- [1] Donald E. Knuth, "The Stanford GraphBase: A Platform for Combinatorial Computing", ACM Press, New York, 1993. [2] http://www-cs-faculty.stanford.edu/~knuth/sgb.html """ __author__ = """Aric Hagberg (hagberg@lanl.gov)""" # Copyright (C) 2004-2006 by # Aric Hagberg # Dan Schult # Pieter Swart # Distributed under the terms of the GNU Lesser General Public License # http://www.gnu.org/copyleft/lesser.html import networkx as NX def miles_graph(): """ Return the cites example graph in miles.dat from the Stanford GraphBase. """ try: fh=open("miles.dat","r") except IOError: print "miles.dat not found" raise G=NX.XGraph() G.position={} G.population={} cities=[] for line in fh.readlines(): if line.startswith("*"): # skip comments continue numfind=re.compile("^\d+") if numfind.match(line): # this line is distances dist=line.split() for d in dist: G.add_edge(city,cities[i],int(d)) i=i+1 else: # this line is a city, position, population i=1 (city,coordpop)=line.split("[") cities.insert(0,city) (coord,pop)=coordpop.split("]") (y,x)=coord.split(",") G.add_node(city) # assign position - flip x axis for matplotlib, shift origin G.position[city]=(-int(x)+7500,int(y)-3000) G.population[city]=float(pop)/1000.0 return G if __name__ == '__main__': import networkx as NX import re import sys G=miles_graph() print "Loaded Donald Knuth's miles.dat containing 128 cities." print "digraph has %d nodes with %d edges"\ %(NX.number_of_nodes(G),NX.number_of_edges(G)) # make new graph of cites, edge if less then 300 miles between them H=NX.Graph() for v in G: H.add_node(v) for (u,v,d) in G.edges(): if d < 300: H.add_edge(u,v) # draw with matplotlib/pylab try: import pylab as P # with nodes sized py population # draw(H,G.position, # node_size=[G.population[v] for v in H], # with_labels=False) # with nodes colored by degree sized by population node_color=P.array([float(H.degree(v)) for v in H]) NX.draw(H,G.position, node_size=[G.population[v] for v in H], node_color=node_color, with_labels=False) P.savefig("miles.png") except: pass