Generators - Small ================== >>> from networkx import * >>> from networkx.isomorph import graph_could_be_isomorphic >>> is_isomorphic=graph_could_be_isomorphic Some small graphs ----------------- >>> null=null_graph() Test make_small_graph --------------------- >>> d=["adjacencylist","Bull Graph",5,[[2,3],[1,3,4],[1,2,5],[2],[3]]] >>> G=make_small_graph(d) >>> is_isomorphic(G, bull_graph()) True Test LCF_graph(n, shift_list, repeats) -------------------------------------- If n<=0, then return the null_graph >>> G=LCF_graph(-10,[1,2],100) >>> is_isomorphic(G,null) True >>> G=LCF_graph(0,[1,2],3) >>> is_isomorphic(G,null) True >>> G=LCF_graph(0,[1,2],10) >>> is_isomorphic(G,null) True Test that LCF(n,[],0) == cycle_graph(n) >>> G=LCF_graph(5,[],0) >>> is_isomorphic(G,cycle_graph(5)) True >>> G=LCF_graph(10,[],0) >>> is_isomorphic(G,cycle_graph(10)) True >>> G=LCF_graph(5,[],1) >>> is_isomorphic(G,cycle_graph(5)) True >>> G=LCF_graph(10,[],10) >>> is_isomorphic(G,cycle_graph(10)) True Generate the utility graph K_{3,3} >>> G=LCF_graph(6,[3,-3],3) >>> utility_graph=complete_bipartite_graph(3,3) >>> is_isomorphic(G, utility_graph) True Test properties of named small graphs ------------------------------------- >>> G=bull_graph() >>> G.number_of_nodes() 5 >>> G.number_of_edges() 5 >>> G.degree() [2, 3, 3, 1, 1] >>> diameter(G) 3 >>> radius(G) 2 >>> G=chvatal_graph() >>> G.number_of_nodes() 12 >>> G.number_of_edges() 24 >>> G.degree()==12*[4] True >>> diameter(G) 2 >>> radius(G) 2 >>> G=cubical_graph() >>> G.number_of_nodes() 8 >>> G.number_of_edges() 12 >>> G.degree()==8*[3] True >>> diameter(G) 3 >>> radius(G) 3 >>> G=desargues_graph() >>> G.number_of_nodes() 20 >>> G.number_of_edges() 30 >>> G.degree()== 20*[3] True >>> G=diamond_graph() >>> G.number_of_nodes() 4 >>> G.degree() [2, 3, 3, 2] >>> diameter(G) 2 >>> radius(G) 1 >>> G=dodecahedral_graph() >>> G.number_of_nodes() 20 >>> G.number_of_edges() 30 >>> G.degree()==20*[3] True >>> diameter(G) 5 >>> radius(G) 5 >>> G=frucht_graph() >>> G.number_of_nodes() 12 >>> G.number_of_edges() 18 >>> G.degree()==12*[3] True >>> diameter(G) 4 >>> radius(G) 3 >>> G=heawood_graph() >>> G.number_of_nodes() 14 >>> G.number_of_edges() 21 >>> G.degree()==14*[3] True >>> diameter(G) 3 >>> radius(G) 3 >>> G=house_graph() >>> G.number_of_nodes() 5 >>> G.number_of_edges() 6 >>> G.degree() [2, 2, 3, 3, 2] >>> diameter(G) 2 >>> radius(G) 2 >>> G=house_x_graph() >>> G.number_of_nodes() 5 >>> G.number_of_edges() 8 >>> G.degree() [3, 3, 4, 4, 2] >>> diameter(G) 2 >>> radius(G) 1 >>> G=icosahedral_graph() >>> G.number_of_nodes() 12 >>> G.number_of_edges() 30 >>> G.degree() [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] >>> diameter(G) 3 >>> radius(G) 3 >>> G=krackhardt_kite_graph() >>> G.number_of_nodes() 10 >>> G.number_of_edges() 18 >>> G.degree() [4, 4, 3, 6, 3, 5, 5, 3, 2, 1] >>> G=moebius_kantor_graph() >>> G.number_of_nodes() 16 >>> G.number_of_edges() 24 >>> G.degree()==16*[3] True >>> diameter(G) 4 >>> G=octahedral_graph() >>> G.number_of_nodes() 6 >>> G.number_of_edges() 12 >>> G.degree()==6*[4] True >>> diameter(G) 2 >>> radius(G) 2 >>> G=pappus_graph() >>> G.number_of_nodes() 18 >>> G.number_of_edges() 27 >>> G.degree()==18*[3] True >>> diameter(G) 4 >>> G=petersen_graph() >>> G.number_of_nodes() 10 >>> G.number_of_edges() 15 >>> G.degree()==10*[3] True >>> diameter(G) 2 >>> radius(G) 2 >>> G=sedgewick_maze_graph() >>> G.number_of_nodes() 8 >>> G.number_of_edges() 10 >>> G.degree() [3, 1, 2, 2, 4, 3, 2, 3] >>> G=tetrahedral_graph() >>> G.number_of_nodes() 4 >>> G.number_of_edges() 6 >>> G.degree() [3, 3, 3, 3] >>> diameter(G) 1 >>> radius(G) 1 >>> G=truncated_cube_graph() >>> G.number_of_nodes() 24 >>> G.number_of_edges() 36 >>> G.degree()==24*[3] True >>> G=truncated_tetrahedron_graph() >>> G.number_of_nodes() 12 >>> G.number_of_edges() 18 >>> G.degree()==12*[3] True >>> G=tutte_graph() >>> G.number_of_nodes() 46 >>> G.number_of_edges() 69 >>> G.degree()==46*[3] True