/************************************************************************* * * * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. * * All rights reserved. Email: russ@q12.org Web: www.q12.org * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of EITHER: * * (1) The GNU Lesser General Public License as published by the Free * * Software Foundation; either version 2.1 of the License, or (at * * your option) any later version. The text of the GNU Lesser * * General Public License is included with this library in the * * file LICENSE.TXT. * * (2) The BSD-style license that is included with this library in * * the file LICENSE-BSD.TXT. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * * LICENSE.TXT and LICENSE-BSD.TXT for more details. * * * *************************************************************************/ /* standard ODE geometry primitives: public API and pairwise collision functions. the rule is that only the low level primitive collision functions should set dContactGeom::g1 and dContactGeom::g2. */ #include #include #include #include #include #include "collision_kernel.h" #include "collision_std.h" #include "collision_util.h" #ifdef _MSC_VER #pragma warning(disable:4291) // for VC++, no complaints about "no matching operator delete found" #endif //**************************************************************************** // the basic geometry objects struct dxSphere : public dxGeom { dReal radius; // sphere radius dxSphere (dSpaceID space, dReal _radius); void computeAABB(); }; struct dxBox : public dxGeom { dVector3 side; // side lengths (x,y,z) dxBox (dSpaceID space, dReal lx, dReal ly, dReal lz); void computeAABB(); }; struct dxCCylinder : public dxGeom { dReal radius,lz; // radius, length along z axis dxCCylinder (dSpaceID space, dReal _radius, dReal _length); void computeAABB(); }; #ifdef dCYLINDER_ENABLED struct dxCylinder : public dxGeom { dReal radius,lz; // radius, length along z axis dxCylinder (dSpaceID space, dReal _radius, dReal _length); void computeAABB(); }; #endif struct dxPlane : public dxGeom { dReal p[4]; dxPlane (dSpaceID space, dReal a, dReal b, dReal c, dReal d); void computeAABB(); }; struct dxRay : public dxGeom { dReal length; dxRay (dSpaceID space, dReal _length); void computeAABB(); }; //**************************************************************************** // sphere public API dxSphere::dxSphere (dSpaceID space, dReal _radius) : dxGeom (space,1) { dAASSERT (_radius > 0); type = dSphereClass; radius = _radius; } void dxSphere::computeAABB() { aabb[0] = final_posr->pos[0] - radius; aabb[1] = final_posr->pos[0] + radius; aabb[2] = final_posr->pos[1] - radius; aabb[3] = final_posr->pos[1] + radius; aabb[4] = final_posr->pos[2] - radius; aabb[5] = final_posr->pos[2] + radius; } dGeomID dCreateSphere (dSpaceID space, dReal radius) { return new dxSphere (space,radius); } void dGeomSphereSetRadius (dGeomID g, dReal radius) { dUASSERT (g && g->type == dSphereClass,"argument not a sphere"); dAASSERT (radius > 0); dxSphere *s = (dxSphere*) g; s->radius = radius; dGeomMoved (g); } dReal dGeomSphereGetRadius (dGeomID g) { dUASSERT (g && g->type == dSphereClass,"argument not a sphere"); dxSphere *s = (dxSphere*) g; return s->radius; } dReal dGeomSpherePointDepth (dGeomID g, dReal x, dReal y, dReal z) { dUASSERT (g && g->type == dSphereClass,"argument not a sphere"); g->recomputePosr(); dxSphere *s = (dxSphere*) g; dReal * pos = s->final_posr->pos; return s->radius - dSqrt ((x-pos[0])*(x-pos[0]) + (y-pos[1])*(y-pos[1]) + (z-pos[2])*(z-pos[2])); } //**************************************************************************** // box public API dxBox::dxBox (dSpaceID space, dReal lx, dReal ly, dReal lz) : dxGeom (space,1) { dAASSERT (lx >= 0 && ly >= 0 && lz >= 0); type = dBoxClass; side[0] = lx; side[1] = ly; side[2] = lz; } void dxBox::computeAABB() { const dMatrix3& R = final_posr->R; const dVector3& pos = final_posr->pos; dReal xrange = REAL(0.5) * (dFabs (R[0] * side[0]) + dFabs (R[1] * side[1]) + dFabs (R[2] * side[2])); dReal yrange = REAL(0.5) * (dFabs (R[4] * side[0]) + dFabs (R[5] * side[1]) + dFabs (R[6] * side[2])); dReal zrange = REAL(0.5) * (dFabs (R[8] * side[0]) + dFabs (R[9] * side[1]) + dFabs (R[10] * side[2])); aabb[0] = pos[0] - xrange; aabb[1] = pos[0] + xrange; aabb[2] = pos[1] - yrange; aabb[3] = pos[1] + yrange; aabb[4] = pos[2] - zrange; aabb[5] = pos[2] + zrange; } dGeomID dCreateBox (dSpaceID space, dReal lx, dReal ly, dReal lz) { return new dxBox (space,lx,ly,lz); } void dGeomBoxSetLengths (dGeomID g, dReal lx, dReal ly, dReal lz) { dUASSERT (g && g->type == dBoxClass,"argument not a box"); dAASSERT (lx > 0 && ly > 0 && lz > 0); dxBox *b = (dxBox*) g; b->side[0] = lx; b->side[1] = ly; b->side[2] = lz; dGeomMoved (g); } void dGeomBoxGetLengths (dGeomID g, dVector3 result) { dUASSERT (g && g->type == dBoxClass,"argument not a box"); dxBox *b = (dxBox*) g; result[0] = b->side[0]; result[1] = b->side[1]; result[2] = b->side[2]; } dReal dGeomBoxPointDepth (dGeomID g, dReal x, dReal y, dReal z) { dUASSERT (g && g->type == dBoxClass,"argument not a box"); g->recomputePosr(); dxBox *b = (dxBox*) g; // Set p = (x,y,z) relative to box center // // This will be (0,0,0) if the point is at (side[0]/2,side[1]/2,side[2]/2) dVector3 p,q; p[0] = x - b->final_posr->pos[0]; p[1] = y - b->final_posr->pos[1]; p[2] = z - b->final_posr->pos[2]; // Rotate p into box's coordinate frame, so we can // treat the OBB as an AABB dMULTIPLY1_331 (q,b->final_posr->R,p); // Record distance from point to each successive box side, and see // if the point is inside all six sides dReal dist[6]; int i; bool inside = true; for (i=0; i < 3; i++) { dReal side = b->side[i] * REAL(0.5); dist[i ] = side - q[i]; dist[i+3] = side + q[i]; if ((dist[i] < 0) || (dist[i+3] < 0)) { inside = false; } } // If point is inside the box, the depth is the smallest positive distance // to any side if (inside) { dReal smallest_dist = (dReal) (unsigned) -1; for (i=0; i < 6; i++) { if (dist[i] < smallest_dist) smallest_dist = dist[i]; } return smallest_dist; } // Otherwise, if point is outside the box, the depth is the largest // distance to any side. This is an approximation to the 'proper' // solution (the proper solution may be larger in some cases). dReal largest_dist = 0; for (i=0; i < 6; i++) { if (dist[i] > largest_dist) largest_dist = dist[i]; } return -largest_dist; } //**************************************************************************** // capped cylinder public API dxCCylinder::dxCCylinder (dSpaceID space, dReal _radius, dReal _length) : dxGeom (space,1) { dAASSERT (_radius > 0 && _length > 0); type = dCCylinderClass; radius = _radius; lz = _length; } void dxCCylinder::computeAABB() { const dMatrix3& R = final_posr->R; const dVector3& pos = final_posr->pos; dReal xrange = dFabs(R[2] * lz) * REAL(0.5) + radius; dReal yrange = dFabs(R[6] * lz) * REAL(0.5) + radius; dReal zrange = dFabs(R[10] * lz) * REAL(0.5) + radius; aabb[0] = pos[0] - xrange; aabb[1] = pos[0] + xrange; aabb[2] = pos[1] - yrange; aabb[3] = pos[1] + yrange; aabb[4] = pos[2] - zrange; aabb[5] = pos[2] + zrange; } dGeomID dCreateCCylinder (dSpaceID space, dReal radius, dReal length) { return new dxCCylinder (space,radius,length); } void dGeomCCylinderSetParams (dGeomID g, dReal radius, dReal length) { dUASSERT (g && g->type == dCCylinderClass,"argument not a ccylinder"); dAASSERT (radius > 0 && length > 0); dxCCylinder *c = (dxCCylinder*) g; c->radius = radius; c->lz = length; dGeomMoved (g); } void dGeomCCylinderGetParams (dGeomID g, dReal *radius, dReal *length) { dUASSERT (g && g->type == dCCylinderClass,"argument not a ccylinder"); dxCCylinder *c = (dxCCylinder*) g; *radius = c->radius; *length = c->lz; } dReal dGeomCCylinderPointDepth (dGeomID g, dReal x, dReal y, dReal z) { dUASSERT (g && g->type == dCCylinderClass,"argument not a ccylinder"); g->recomputePosr(); dxCCylinder *c = (dxCCylinder*) g; const dReal* R = g->final_posr->R; const dReal* pos = g->final_posr->pos; dVector3 a; a[0] = x - pos[0]; a[1] = y - pos[1]; a[2] = z - pos[2]; dReal beta = dDOT14(a,R+2); dReal lz2 = c->lz*REAL(0.5); if (beta < -lz2) beta = -lz2; else if (beta > lz2) beta = lz2; a[0] = c->final_posr->pos[0] + beta*R[0*4+2]; a[1] = c->final_posr->pos[1] + beta*R[1*4+2]; a[2] = c->final_posr->pos[2] + beta*R[2*4+2]; return c->radius - dSqrt ((x-a[0])*(x-a[0]) + (y-a[1])*(y-a[1]) + (z-a[2])*(z-a[2])); } //**************************************************************************** // plane public API static void make_sure_plane_normal_has_unit_length (dxPlane *g) { dReal l = g->p[0]*g->p[0] + g->p[1]*g->p[1] + g->p[2]*g->p[2]; if (l > 0) { l = dRecipSqrt(l); g->p[0] *= l; g->p[1] *= l; g->p[2] *= l; g->p[3] *= l; } else { g->p[0] = 1; g->p[1] = 0; g->p[2] = 0; g->p[3] = 0; } } dxPlane::dxPlane (dSpaceID space, dReal a, dReal b, dReal c, dReal d) : dxGeom (space,0) { type = dPlaneClass; p[0] = a; p[1] = b; p[2] = c; p[3] = d; make_sure_plane_normal_has_unit_length (this); } void dxPlane::computeAABB() { // @@@ planes that have normal vectors aligned along an axis can use a // @@@ less comprehensive (half space) bounding box. aabb[0] = -dInfinity; aabb[1] = dInfinity; aabb[2] = -dInfinity; aabb[3] = dInfinity; aabb[4] = -dInfinity; aabb[5] = dInfinity; } dGeomID dCreatePlane (dSpaceID space, dReal a, dReal b, dReal c, dReal d) { return new dxPlane (space,a,b,c,d); } void dGeomPlaneSetParams (dGeomID g, dReal a, dReal b, dReal c, dReal d) { dUASSERT (g && g->type == dPlaneClass,"argument not a plane"); dxPlane *p = (dxPlane*) g; p->p[0] = a; p->p[1] = b; p->p[2] = c; p->p[3] = d; make_sure_plane_normal_has_unit_length (p); dGeomMoved (g); } void dGeomPlaneGetParams (dGeomID g, dVector4 result) { dUASSERT (g && g->type == dPlaneClass,"argument not a plane"); dxPlane *p = (dxPlane*) g; result[0] = p->p[0]; result[1] = p->p[1]; result[2] = p->p[2]; result[3] = p->p[3]; } dReal dGeomPlanePointDepth (dGeomID g, dReal x, dReal y, dReal z) { dUASSERT (g && g->type == dPlaneClass,"argument not a plane"); dxPlane *p = (dxPlane*) g; return p->p[3] - p->p[0]*x - p->p[1]*y - p->p[2]*z; } //**************************************************************************** // ray public API dxRay::dxRay (dSpaceID space, dReal _length) : dxGeom (space,1) { type = dRayClass; length = _length; } void dxRay::computeAABB() { dVector3 e; e[0] = final_posr->pos[0] + final_posr->R[0*4+2]*length; e[1] = final_posr->pos[1] + final_posr->R[1*4+2]*length; e[2] = final_posr->pos[2] + final_posr->R[2*4+2]*length; if (final_posr->pos[0] < e[0]){ aabb[0] = final_posr->pos[0]; aabb[1] = e[0]; } else{ aabb[0] = e[0]; aabb[1] = final_posr->pos[0]; } if (final_posr->pos[1] < e[1]){ aabb[2] = final_posr->pos[1]; aabb[3] = e[1]; } else{ aabb[2] = e[1]; aabb[3] = final_posr->pos[1]; } if (final_posr->pos[2] < e[2]){ aabb[4] = final_posr->pos[2]; aabb[5] = e[2]; } else{ aabb[4] = e[2]; aabb[5] = final_posr->pos[2]; } } dGeomID dCreateRay (dSpaceID space, dReal length) { return new dxRay (space,length); } void dGeomRaySetLength (dGeomID g, dReal length) { dUASSERT (g && g->type == dRayClass,"argument not a ray"); dxRay *r = (dxRay*) g; r->length = length; dGeomMoved (g); } dReal dGeomRayGetLength (dGeomID g) { dUASSERT (g && g->type == dRayClass,"argument not a ray"); dxRay *r = (dxRay*) g; return r->length; } void dGeomRaySet (dGeomID g, dReal px, dReal py, dReal pz, dReal dx, dReal dy, dReal dz) { dUASSERT (g && g->type == dRayClass,"argument not a ray"); g->recomputePosr(); dReal* rot = g->final_posr->R; dReal* pos = g->final_posr->pos; dVector3 n; pos[0] = px; pos[1] = py; pos[2] = pz; n[0] = dx; n[1] = dy; n[2] = dz; dNormalize3(n); rot[0*4+2] = n[0]; rot[1*4+2] = n[1]; rot[2*4+2] = n[2]; dGeomMoved (g); } void dGeomRayGet (dGeomID g, dVector3 start, dVector3 dir) { dUASSERT (g && g->type == dRayClass,"argument not a ray"); g->recomputePosr(); start[0] = g->final_posr->pos[0]; start[1] = g->final_posr->pos[1]; start[2] = g->final_posr->pos[2]; dir[0] = g->final_posr->R[0*4+2]; dir[1] = g->final_posr->R[1*4+2]; dir[2] = g->final_posr->R[2*4+2]; } void dGeomRaySetParams (dxGeom *g, int FirstContact, int BackfaceCull) { dUASSERT (g && g->type == dRayClass,"argument not a ray"); if (FirstContact){ g->gflags |= RAY_FIRSTCONTACT; } else g->gflags &= ~RAY_FIRSTCONTACT; if (BackfaceCull){ g->gflags |= RAY_BACKFACECULL; } else g->gflags &= ~RAY_BACKFACECULL; } void dGeomRayGetParams (dxGeom *g, int *FirstContact, int *BackfaceCull) { dUASSERT (g && g->type == dRayClass,"argument not a ray"); (*FirstContact) = ((g->gflags & RAY_FIRSTCONTACT) != 0); (*BackfaceCull) = ((g->gflags & RAY_BACKFACECULL) != 0); } void dGeomRaySetClosestHit (dxGeom *g, int closestHit) { dUASSERT (g && g->type == dRayClass,"argument not a ray"); if (closestHit){ g->gflags |= RAY_CLOSEST_HIT; } else g->gflags &= ~RAY_CLOSEST_HIT; } int dGeomRayGetClosestHit (dxGeom *g) { dUASSERT (g && g->type == dRayClass,"argument not a ray"); return ((g->gflags & RAY_CLOSEST_HIT) != 0); } //**************************************************************************** // box-box collision utility // find all the intersection points between the 2D rectangle with vertices // at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]), // (p[2],p[3]),(p[4],p[5]),(p[6],p[7]). // // the intersection points are returned as x,y pairs in the 'ret' array. // the number of intersection points is returned by the function (this will // be in the range 0 to 8). static int intersectRectQuad (dReal h[2], dReal p[8], dReal ret[16]) { // q (and r) contain nq (and nr) coordinate points for the current (and // chopped) polygons int nq=4,nr; dReal buffer[16]; dReal *q = p; dReal *r = ret; for (int dir=0; dir <= 1; dir++) { // direction notation: xy[0] = x axis, xy[1] = y axis for (int sign=-1; sign <= 1; sign += 2) { // chop q along the line xy[dir] = sign*h[dir] dReal *pq = q; dReal *pr = r; nr = 0; for (int i=nq; i > 0; i--) { // go through all points in q and all lines between adjacent points if (sign*pq[dir] < h[dir]) { // this point is inside the chopping line pr[0] = pq[0]; pr[1] = pq[1]; pr += 2; nr++; if (nr & 8) { q = r; goto done; } } dReal *nextq = (i > 1) ? pq+2 : q; if ((sign*pq[dir] < h[dir]) ^ (sign*nextq[dir] < h[dir])) { // this line crosses the chopping line pr[1-dir] = pq[1-dir] + (nextq[1-dir]-pq[1-dir]) / (nextq[dir]-pq[dir]) * (sign*h[dir]-pq[dir]); pr[dir] = sign*h[dir]; pr += 2; nr++; if (nr & 8) { q = r; goto done; } } pq += 2; } q = r; r = (q==ret) ? buffer : ret; nq = nr; } } done: if (q != ret) memcpy (ret,q,nr*2*sizeof(dReal)); return nr; } // given n points in the plane (array p, of size 2*n), generate m points that // best represent the whole set. the definition of 'best' here is not // predetermined - the idea is to select points that give good box-box // collision detection behavior. the chosen point indexes are returned in the // array iret (of size m). 'i0' is always the first entry in the array. // n must be in the range [1..8]. m must be in the range [1..n]. i0 must be // in the range [0..n-1]. void cullPoints (int n, dReal p[], int m, int i0, int iret[]) { // compute the centroid of the polygon in cx,cy int i,j; dReal a,cx,cy,q; if (n==1) { cx = p[0]; cy = p[1]; } else if (n==2) { cx = REAL(0.5)*(p[0] + p[2]); cy = REAL(0.5)*(p[1] + p[3]); } else { a = 0; cx = 0; cy = 0; for (i=0; i<(n-1); i++) { q = p[i*2]*p[i*2+3] - p[i*2+2]*p[i*2+1]; a += q; cx += q*(p[i*2]+p[i*2+2]); cy += q*(p[i*2+1]+p[i*2+3]); } q = p[n*2-2]*p[1] - p[0]*p[n*2-1]; a = dRecip(REAL(3.0)*(a+q)); cx = a*(cx + q*(p[n*2-2]+p[0])); cy = a*(cy + q*(p[n*2-1]+p[1])); } // compute the angle of each point w.r.t. the centroid dReal A[8]; for (i=0; i M_PI) a -= 2*M_PI; dReal maxdiff=1e9,diff; #ifndef dNODEBUG *iret = i0; // iret is not allowed to keep this value #endif for (i=0; i M_PI) diff = 2*M_PI - diff; if (diff < maxdiff) { maxdiff = diff; *iret = i; } } } #ifndef dNODEBUG dIASSERT (*iret != i0); // ensure iret got set #endif avail[*iret] = 0; iret++; } } // given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and // generate contact points. this returns 0 if there is no contact otherwise // it returns the number of contacts generated. // `normal' returns the contact normal. // `depth' returns the maximum penetration depth along that normal. // `return_code' returns a number indicating the type of contact that was // detected: // 1,2,3 = box 2 intersects with a face of box 1 // 4,5,6 = box 1 intersects with a face of box 2 // 7..15 = edge-edge contact // `maxc' is the maximum number of contacts allowed to be generated, i.e. // the size of the `contact' array. // `contact' and `skip' are the contact array information provided to the // collision functions. this function only fills in the position and depth // fields. int dBoxBox (const dVector3 p1, const dMatrix3 R1, const dVector3 side1, const dVector3 p2, const dMatrix3 R2, const dVector3 side2, dVector3 normal, dReal *depth, int *return_code, int maxc, dContactGeom *contact, int skip) { const dReal fudge_factor = REAL(1.05); dVector3 p,pp,normalC; const dReal *normalR = 0; dReal A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33, Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l; int i,j,invert_normal,code; // get vector from centers of box 1 to box 2, relative to box 1 p[0] = p2[0] - p1[0]; p[1] = p2[1] - p1[1]; p[2] = p2[2] - p1[2]; dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1 // get side lengths / 2 A[0] = side1[0]*REAL(0.5); A[1] = side1[1]*REAL(0.5); A[2] = side1[2]*REAL(0.5); B[0] = side2[0]*REAL(0.5); B[1] = side2[1]*REAL(0.5); B[2] = side2[2]*REAL(0.5); // Rij is R1'*R2, i.e. the relative rotation between R1 and R2 R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2); R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2); R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2); Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13); Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23); Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33); // for all 15 possible separating axes: // * see if the axis separates the boxes. if so, return 0. // * find the depth of the penetration along the separating axis (s2) // * if this is the largest depth so far, record it. // the normal vector will be set to the separating axis with the smallest // depth. note: normalR is set to point to a column of R1 or R2 if that is // the smallest depth normal so far. otherwise normalR is 0 and normalC is // set to a vector relative to body 1. invert_normal is 1 if the sign of // the normal should be flipped. #define TST(expr1,expr2,norm,cc) \ s2 = dFabs(expr1) - (expr2); \ if (s2 > 0) return 0; \ if (s2 > s) { \ s = s2; \ normalR = norm; \ invert_normal = ((expr1) < 0); \ code = (cc); \ } s = -dInfinity; invert_normal = 0; code = 0; // separating axis = u1,u2,u3 TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1); TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2); TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3); // separating axis = v1,v2,v3 TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4); TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5); TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6); // note: cross product axes need to be scaled when s is computed. // normal (n1,n2,n3) is relative to box 1. #undef TST #define TST(expr1,expr2,n1,n2,n3,cc) \ s2 = dFabs(expr1) - (expr2); \ if (s2 > 0) return 0; \ l = dSqrt ((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \ if (l > 0) { \ s2 /= l; \ if (s2*fudge_factor > s) { \ s = s2; \ normalR = 0; \ normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \ invert_normal = ((expr1) < 0); \ code = (cc); \ } \ } // separating axis = u1 x (v1,v2,v3) TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7); TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8); TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9); // separating axis = u2 x (v1,v2,v3) TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10); TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11); TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12); // separating axis = u3 x (v1,v2,v3) TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13); TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14); TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15); #undef TST if (!code) return 0; // if we get to this point, the boxes interpenetrate. compute the normal // in global coordinates. if (normalR) { normal[0] = normalR[0]; normal[1] = normalR[4]; normal[2] = normalR[8]; } else { dMULTIPLY0_331 (normal,R1,normalC); } if (invert_normal) { normal[0] = -normal[0]; normal[1] = -normal[1]; normal[2] = -normal[2]; } *depth = -s; // compute contact point(s) if (code > 6) { // an edge from box 1 touches an edge from box 2. // find a point pa on the intersecting edge of box 1 dVector3 pa; dReal sign; for (i=0; i<3; i++) pa[i] = p1[i]; for (j=0; j<3; j++) { sign = (dDOT14(normal,R1+j) > 0) ? REAL(1.0) : REAL(-1.0); for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j]; } // find a point pb on the intersecting edge of box 2 dVector3 pb; for (i=0; i<3; i++) pb[i] = p2[i]; for (j=0; j<3; j++) { sign = (dDOT14(normal,R2+j) > 0) ? REAL(-1.0) : REAL(1.0); for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j]; } dReal alpha,beta; dVector3 ua,ub; for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4]; for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4]; dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta); for (i=0; i<3; i++) pa[i] += ua[i]*alpha; for (i=0; i<3; i++) pb[i] += ub[i]*beta; for (i=0; i<3; i++) contact[0].pos[i] = REAL(0.5)*(pa[i]+pb[i]); contact[0].depth = *depth; *return_code = code; return 1; } // okay, we have a face-something intersection (because the separating // axis is perpendicular to a face). define face 'a' to be the reference // face (i.e. the normal vector is perpendicular to this) and face 'b' to be // the incident face (the closest face of the other box). const dReal *Ra,*Rb,*pa,*pb,*Sa,*Sb; if (code <= 3) { Ra = R1; Rb = R2; pa = p1; pb = p2; Sa = A; Sb = B; } else { Ra = R2; Rb = R1; pa = p2; pb = p1; Sa = B; Sb = A; } // nr = normal vector of reference face dotted with axes of incident box. // anr = absolute values of nr. dVector3 normal2,nr,anr; if (code <= 3) { normal2[0] = normal[0]; normal2[1] = normal[1]; normal2[2] = normal[2]; } else { normal2[0] = -normal[0]; normal2[1] = -normal[1]; normal2[2] = -normal[2]; } dMULTIPLY1_331 (nr,Rb,normal2); anr[0] = dFabs (nr[0]); anr[1] = dFabs (nr[1]); anr[2] = dFabs (nr[2]); // find the largest compontent of anr: this corresponds to the normal // for the indident face. the other axis numbers of the indicent face // are stored in a1,a2. int lanr,a1,a2; if (anr[1] > anr[0]) { if (anr[1] > anr[2]) { a1 = 0; lanr = 1; a2 = 2; } else { a1 = 0; a2 = 1; lanr = 2; } } else { if (anr[0] > anr[2]) { lanr = 0; a1 = 1; a2 = 2; } else { a1 = 0; a2 = 1; lanr = 2; } } // compute center point of incident face, in reference-face coordinates dVector3 center; if (nr[lanr] < 0) { for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr]; } else { for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr]; } // find the normal and non-normal axis numbers of the reference box int codeN,code1,code2; if (code <= 3) codeN = code-1; else codeN = code-4; if (codeN==0) { code1 = 1; code2 = 2; } else if (codeN==1) { code1 = 0; code2 = 2; } else { code1 = 0; code2 = 1; } // find the four corners of the incident face, in reference-face coordinates dReal quad[8]; // 2D coordinate of incident face (x,y pairs) dReal c1,c2,m11,m12,m21,m22; c1 = dDOT14 (center,Ra+code1); c2 = dDOT14 (center,Ra+code2); // optimize this? - we have already computed this data above, but it is not // stored in an easy-to-index format. for now it's quicker just to recompute // the four dot products. m11 = dDOT44 (Ra+code1,Rb+a1); m12 = dDOT44 (Ra+code1,Rb+a2); m21 = dDOT44 (Ra+code2,Rb+a1); m22 = dDOT44 (Ra+code2,Rb+a2); { dReal k1 = m11*Sb[a1]; dReal k2 = m21*Sb[a1]; dReal k3 = m12*Sb[a2]; dReal k4 = m22*Sb[a2]; quad[0] = c1 - k1 - k3; quad[1] = c2 - k2 - k4; quad[2] = c1 - k1 + k3; quad[3] = c2 - k2 + k4; quad[4] = c1 + k1 + k3; quad[5] = c2 + k2 + k4; quad[6] = c1 + k1 - k3; quad[7] = c2 + k2 - k4; } // find the size of the reference face dReal rect[2]; rect[0] = Sa[code1]; rect[1] = Sa[code2]; // intersect the incident and reference faces dReal ret[16]; int n = intersectRectQuad (rect,quad,ret); if (n < 1) return 0; // this should never happen // convert the intersection points into reference-face coordinates, // and compute the contact position and depth for each point. only keep // those points that have a positive (penetrating) depth. delete points in // the 'ret' array as necessary so that 'point' and 'ret' correspond. dReal point[3*8]; // penetrating contact points dReal dep[8]; // depths for those points dReal det1 = dRecip(m11*m22 - m12*m21); m11 *= det1; m12 *= det1; m21 *= det1; m22 *= det1; int cnum = 0; // number of penetrating contact points found for (j=0; j < n; j++) { dReal k1 = m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2); dReal k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2); for (i=0; i<3; i++) point[cnum*3+i] = center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2]; dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3); if (dep[cnum] >= 0) { ret[cnum*2] = ret[j*2]; ret[cnum*2+1] = ret[j*2+1]; cnum++; } } if (cnum < 1) return 0; // this should never happen // we can't generate more contacts than we actually have if (maxc > cnum) maxc = cnum; if (maxc < 1) maxc = 1; if (cnum <= maxc) { // we have less contacts than we need, so we use them all for (j=0; j < cnum; j++) { dContactGeom *con = CONTACT(contact,skip*j); for (i=0; i<3; i++) con->pos[i] = point[j*3+i] + pa[i]; con->depth = dep[j]; } } else { // we have more contacts than are wanted, some of them must be culled. // find the deepest point, it is always the first contact. int i1 = 0; dReal maxdepth = dep[0]; for (i=1; i maxdepth) { maxdepth = dep[i]; i1 = i; } } int iret[8]; cullPoints (cnum,ret,maxc,i1,iret); for (j=0; j < maxc; j++) { dContactGeom *con = CONTACT(contact,skip*j); for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i]; con->depth = dep[iret[j]]; } cnum = maxc; } *return_code = code; return cnum; } //**************************************************************************** // pairwise collision functions for standard geom types int dCollideSphereSphere (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dSphereClass); dIASSERT (o2->type == dSphereClass); dxSphere *sphere1 = (dxSphere*) o1; dxSphere *sphere2 = (dxSphere*) o2; contact->g1 = o1; contact->g2 = o2; return dCollideSpheres (o1->final_posr->pos,sphere1->radius, o2->final_posr->pos,sphere2->radius,contact); } int dCollideSphereBox (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { // this is easy. get the sphere center `p' relative to the box, and then clip // that to the boundary of the box (call that point `q'). if q is on the // boundary of the box and |p-q| is <= sphere radius, they touch. // if q is inside the box, the sphere is inside the box, so set a contact // normal to push the sphere to the closest box face. dVector3 l,t,p,q,r; dReal depth; int onborder = 0; dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dSphereClass); dIASSERT (o2->type == dBoxClass); dxSphere *sphere = (dxSphere*) o1; dxBox *box = (dxBox*) o2; contact->g1 = o1; contact->g2 = o2; p[0] = o1->final_posr->pos[0] - o2->final_posr->pos[0]; p[1] = o1->final_posr->pos[1] - o2->final_posr->pos[1]; p[2] = o1->final_posr->pos[2] - o2->final_posr->pos[2]; l[0] = box->side[0]*REAL(0.5); t[0] = dDOT14(p,o2->final_posr->R); if (t[0] < -l[0]) { t[0] = -l[0]; onborder = 1; } if (t[0] > l[0]) { t[0] = l[0]; onborder = 1; } l[1] = box->side[1]*REAL(0.5); t[1] = dDOT14(p,o2->final_posr->R+1); if (t[1] < -l[1]) { t[1] = -l[1]; onborder = 1; } if (t[1] > l[1]) { t[1] = l[1]; onborder = 1; } t[2] = dDOT14(p,o2->final_posr->R+2); l[2] = box->side[2]*REAL(0.5); if (t[2] < -l[2]) { t[2] = -l[2]; onborder = 1; } if (t[2] > l[2]) { t[2] = l[2]; onborder = 1; } if (!onborder) { // sphere center inside box. find closest face to `t' dReal min_distance = l[0] - dFabs(t[0]); int mini = 0; for (int i=1; i<3; i++) { dReal face_distance = l[i] - dFabs(t[i]); if (face_distance < min_distance) { min_distance = face_distance; mini = i; } } // contact position = sphere center contact->pos[0] = o1->final_posr->pos[0]; contact->pos[1] = o1->final_posr->pos[1]; contact->pos[2] = o1->final_posr->pos[2]; // contact normal points to closest face dVector3 tmp; tmp[0] = 0; tmp[1] = 0; tmp[2] = 0; tmp[mini] = (t[mini] > 0) ? REAL(1.0) : REAL(-1.0); dMULTIPLY0_331 (contact->normal,o2->final_posr->R,tmp); // contact depth = distance to wall along normal plus radius contact->depth = min_distance + sphere->radius; return 1; } t[3] = 0; //@@@ hmmm dMULTIPLY0_331 (q,o2->final_posr->R,t); r[0] = p[0] - q[0]; r[1] = p[1] - q[1]; r[2] = p[2] - q[2]; depth = sphere->radius - dSqrt(dDOT(r,r)); if (depth < 0) return 0; contact->pos[0] = q[0] + o2->final_posr->pos[0]; contact->pos[1] = q[1] + o2->final_posr->pos[1]; contact->pos[2] = q[2] + o2->final_posr->pos[2]; contact->normal[0] = r[0]; contact->normal[1] = r[1]; contact->normal[2] = r[2]; dNormalize3 (contact->normal); contact->depth = depth; return 1; } int dCollideSpherePlane (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dSphereClass); dIASSERT (o2->type == dPlaneClass); dxSphere *sphere = (dxSphere*) o1; dxPlane *plane = (dxPlane*) o2; contact->g1 = o1; contact->g2 = o2; dReal k = dDOT (o1->final_posr->pos,plane->p); dReal depth = plane->p[3] - k + sphere->radius; if (depth >= 0) { contact->normal[0] = plane->p[0]; contact->normal[1] = plane->p[1]; contact->normal[2] = plane->p[2]; contact->pos[0] = o1->final_posr->pos[0] - plane->p[0] * sphere->radius; contact->pos[1] = o1->final_posr->pos[1] - plane->p[1] * sphere->radius; contact->pos[2] = o1->final_posr->pos[2] - plane->p[2] * sphere->radius; contact->depth = depth; return 1; } else return 0; } int dCollideBoxBox (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dBoxClass); dIASSERT (o2->type == dBoxClass); dVector3 normal; dReal depth; int code; dxBox *b1 = (dxBox*) o1; dxBox *b2 = (dxBox*) o2; int num = dBoxBox (o1->final_posr->pos,o1->final_posr->R,b1->side, o2->final_posr->pos,o2->final_posr->R,b2->side, normal,&depth,&code,flags & NUMC_MASK,contact,skip); for (int i=0; inormal[0] = -normal[0]; CONTACT(contact,i*skip)->normal[1] = -normal[1]; CONTACT(contact,i*skip)->normal[2] = -normal[2]; CONTACT(contact,i*skip)->g1 = o1; CONTACT(contact,i*skip)->g2 = o2; } return num; } int dCollideBoxPlane (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dBoxClass); dIASSERT (o2->type == dPlaneClass); dxBox *box = (dxBox*) o1; dxPlane *plane = (dxPlane*) o2; contact->g1 = o1; contact->g2 = o2; int ret = 0; //@@@ problem: using 4-vector (plane->p) as 3-vector (normal). const dReal *R = o1->final_posr->R; // rotation of box const dReal *n = plane->p; // normal vector // project sides lengths along normal vector, get absolute values dReal Q1 = dDOT14(n,R+0); dReal Q2 = dDOT14(n,R+1); dReal Q3 = dDOT14(n,R+2); dReal A1 = box->side[0] * Q1; dReal A2 = box->side[1] * Q2; dReal A3 = box->side[2] * Q3; dReal B1 = dFabs(A1); dReal B2 = dFabs(A2); dReal B3 = dFabs(A3); // early exit test dReal depth = plane->p[3] + REAL(0.5)*(B1+B2+B3) - dDOT(n,o1->final_posr->pos); if (depth < 0) return 0; // find number of contacts requested int maxc = flags & NUMC_MASK; if (maxc < 1) maxc = 1; if (maxc > 3) maxc = 3; // no more than 3 contacts per box allowed // find deepest point dVector3 p; p[0] = o1->final_posr->pos[0]; p[1] = o1->final_posr->pos[1]; p[2] = o1->final_posr->pos[2]; #define FOO(i,op) \ p[0] op REAL(0.5)*box->side[i] * R[0+i]; \ p[1] op REAL(0.5)*box->side[i] * R[4+i]; \ p[2] op REAL(0.5)*box->side[i] * R[8+i]; #define BAR(i,iinc) if (A ## iinc > 0) { FOO(i,-=) } else { FOO(i,+=) } BAR(0,1); BAR(1,2); BAR(2,3); #undef FOO #undef BAR // the deepest point is the first contact point contact->pos[0] = p[0]; contact->pos[1] = p[1]; contact->pos[2] = p[2]; contact->normal[0] = n[0]; contact->normal[1] = n[1]; contact->normal[2] = n[2]; contact->depth = depth; ret = 1; // ret is number of contact points found so far if (maxc == 1) goto done; // get the second and third contact points by starting from `p' and going // along the two sides with the smallest projected length. #define FOO(i,j,op) \ CONTACT(contact,i*skip)->pos[0] = p[0] op box->side[j] * R[0+j]; \ CONTACT(contact,i*skip)->pos[1] = p[1] op box->side[j] * R[4+j]; \ CONTACT(contact,i*skip)->pos[2] = p[2] op box->side[j] * R[8+j]; #define BAR(ctact,side,sideinc) \ depth -= B ## sideinc; \ if (depth < 0) goto done; \ if (A ## sideinc > 0) { FOO(ctact,side,+) } else { FOO(ctact,side,-) } \ CONTACT(contact,ctact*skip)->depth = depth; \ ret++; CONTACT(contact,skip)->normal[0] = n[0]; CONTACT(contact,skip)->normal[1] = n[1]; CONTACT(contact,skip)->normal[2] = n[2]; if (maxc == 3) { CONTACT(contact,2*skip)->normal[0] = n[0]; CONTACT(contact,2*skip)->normal[1] = n[1]; CONTACT(contact,2*skip)->normal[2] = n[2]; } if (B1 < B2) { if (B3 < B1) goto use_side_3; else { BAR(1,0,1); // use side 1 if (maxc == 2) goto done; if (B2 < B3) goto contact2_2; else goto contact2_3; } } else { if (B3 < B2) { use_side_3: // use side 3 BAR(1,2,3); if (maxc == 2) goto done; if (B1 < B2) goto contact2_1; else goto contact2_2; } else { BAR(1,1,2); // use side 2 if (maxc == 2) goto done; if (B1 < B3) goto contact2_1; else goto contact2_3; } } contact2_1: BAR(2,0,1); goto done; contact2_2: BAR(2,1,2); goto done; contact2_3: BAR(2,2,3); goto done; #undef FOO #undef BAR done: for (int i=0; ig1 = o1; CONTACT(contact,i*skip)->g2 = o2; } return ret; } int dCollideCCylinderSphere (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dCCylinderClass); dIASSERT (o2->type == dSphereClass); dxCCylinder *ccyl = (dxCCylinder*) o1; dxSphere *sphere = (dxSphere*) o2; contact->g1 = o1; contact->g2 = o2; // find the point on the cylinder axis that is closest to the sphere dReal alpha = o1->final_posr->R[2] * (o2->final_posr->pos[0] - o1->final_posr->pos[0]) + o1->final_posr->R[6] * (o2->final_posr->pos[1] - o1->final_posr->pos[1]) + o1->final_posr->R[10] * (o2->final_posr->pos[2] - o1->final_posr->pos[2]); dReal lz2 = ccyl->lz * REAL(0.5); if (alpha > lz2) alpha = lz2; if (alpha < -lz2) alpha = -lz2; // collide the spheres dVector3 p; p[0] = o1->final_posr->pos[0] + alpha * o1->final_posr->R[2]; p[1] = o1->final_posr->pos[1] + alpha * o1->final_posr->R[6]; p[2] = o1->final_posr->pos[2] + alpha * o1->final_posr->R[10]; return dCollideSpheres (p,ccyl->radius,o2->final_posr->pos,sphere->radius,contact); } int dCollideCCylinderBox (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dCCylinderClass); dIASSERT (o2->type == dBoxClass); dxCCylinder *cyl = (dxCCylinder*) o1; dxBox *box = (dxBox*) o2; contact->g1 = o1; contact->g2 = o2; // get p1,p2 = cylinder axis endpoints, get radius dVector3 p1,p2; dReal clen = cyl->lz * REAL(0.5); p1[0] = o1->final_posr->pos[0] + clen * o1->final_posr->R[2]; p1[1] = o1->final_posr->pos[1] + clen * o1->final_posr->R[6]; p1[2] = o1->final_posr->pos[2] + clen * o1->final_posr->R[10]; p2[0] = o1->final_posr->pos[0] - clen * o1->final_posr->R[2]; p2[1] = o1->final_posr->pos[1] - clen * o1->final_posr->R[6]; p2[2] = o1->final_posr->pos[2] - clen * o1->final_posr->R[10]; dReal radius = cyl->radius; // copy out box center, rotation matrix, and side array dReal *c = o2->final_posr->pos; dReal *R = o2->final_posr->R; const dReal *side = box->side; // get the closest point between the cylinder axis and the box dVector3 pl,pb; dClosestLineBoxPoints (p1,p2,c,R,side,pl,pb); // generate contact point return dCollideSpheres (pl,radius,pb,0,contact); } int dCollideCCylinderCCylinder (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { int i; const dReal tolerance = REAL(1e-5); dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dCCylinderClass); dIASSERT (o2->type == dCCylinderClass); dxCCylinder *cyl1 = (dxCCylinder*) o1; dxCCylinder *cyl2 = (dxCCylinder*) o2; contact->g1 = o1; contact->g2 = o2; // copy out some variables, for convenience dReal lz1 = cyl1->lz * REAL(0.5); dReal lz2 = cyl2->lz * REAL(0.5); dReal *pos1 = o1->final_posr->pos; dReal *pos2 = o2->final_posr->pos; dReal axis1[3],axis2[3]; axis1[0] = o1->final_posr->R[2]; axis1[1] = o1->final_posr->R[6]; axis1[2] = o1->final_posr->R[10]; axis2[0] = o2->final_posr->R[2]; axis2[1] = o2->final_posr->R[6]; axis2[2] = o2->final_posr->R[10]; // if the cylinder axes are close to parallel, we'll try to detect up to // two contact points along the body of the cylinder. if we can't find any // points then we'll fall back to the closest-points algorithm. note that // we are not treating this special case for reasons of degeneracy, but // because we want two contact points in some situations. the closet-points // algorithm is robust in all casts, but it can return only one contact. dVector3 sphere1,sphere2; dReal a1a2 = dDOT (axis1,axis2); dReal det = REAL(1.0)-a1a2*a1a2; if (det < tolerance) { // the cylinder axes (almost) parallel, so we will generate up to two // contacts. alpha1 and alpha2 (line position parameters) are related by: // alpha2 = alpha1 + (pos1-pos2)'*axis1 (if axis1==axis2) // or alpha2 = -(alpha1 + (pos1-pos2)'*axis1) (if axis1==-axis2) // first compute where the two cylinders overlap in alpha1 space: if (a1a2 < 0) { axis2[0] = -axis2[0]; axis2[1] = -axis2[1]; axis2[2] = -axis2[2]; } dReal q[3]; for (i=0; i<3; i++) q[i] = pos1[i]-pos2[i]; dReal k = dDOT (axis1,q); dReal a1lo = -lz1; dReal a1hi = lz1; dReal a2lo = -lz2 - k; dReal a2hi = lz2 - k; dReal lo = (a1lo > a2lo) ? a1lo : a2lo; dReal hi = (a1hi < a2hi) ? a1hi : a2hi; if (lo <= hi) { int num_contacts = flags & NUMC_MASK; if (num_contacts >= 2 && lo < hi) { // generate up to two contacts. if one of those contacts is // not made, fall back on the one-contact strategy. for (i=0; i<3; i++) sphere1[i] = pos1[i] + lo*axis1[i]; for (i=0; i<3; i++) sphere2[i] = pos2[i] + (lo+k)*axis2[i]; int n1 = dCollideSpheres (sphere1,cyl1->radius, sphere2,cyl2->radius,contact); if (n1) { for (i=0; i<3; i++) sphere1[i] = pos1[i] + hi*axis1[i]; for (i=0; i<3; i++) sphere2[i] = pos2[i] + (hi+k)*axis2[i]; dContactGeom *c2 = CONTACT(contact,skip); int n2 = dCollideSpheres (sphere1,cyl1->radius, sphere2,cyl2->radius, c2); if (n2) { c2->g1 = o1; c2->g2 = o2; return 2; } } } // just one contact to generate, so put it in the middle of // the range dReal alpha1 = (lo + hi) * REAL(0.5); dReal alpha2 = alpha1 + k; for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; return dCollideSpheres (sphere1,cyl1->radius, sphere2,cyl2->radius,contact); } } // use the closest point algorithm dVector3 a1,a2,b1,b2; a1[0] = o1->final_posr->pos[0] + axis1[0]*lz1; a1[1] = o1->final_posr->pos[1] + axis1[1]*lz1; a1[2] = o1->final_posr->pos[2] + axis1[2]*lz1; a2[0] = o1->final_posr->pos[0] - axis1[0]*lz1; a2[1] = o1->final_posr->pos[1] - axis1[1]*lz1; a2[2] = o1->final_posr->pos[2] - axis1[2]*lz1; b1[0] = o2->final_posr->pos[0] + axis2[0]*lz2; b1[1] = o2->final_posr->pos[1] + axis2[1]*lz2; b1[2] = o2->final_posr->pos[2] + axis2[2]*lz2; b2[0] = o2->final_posr->pos[0] - axis2[0]*lz2; b2[1] = o2->final_posr->pos[1] - axis2[1]*lz2; b2[2] = o2->final_posr->pos[2] - axis2[2]*lz2; dClosestLineSegmentPoints (a1,a2,b1,b2,sphere1,sphere2); return dCollideSpheres (sphere1,cyl1->radius,sphere2,cyl2->radius,contact); } int dCollideCCylinderPlane (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dCCylinderClass); dIASSERT (o2->type == dPlaneClass); dxCCylinder *ccyl = (dxCCylinder*) o1; dxPlane *plane = (dxPlane*) o2; // collide the deepest capping sphere with the plane dReal sign = (dDOT14 (plane->p,o1->final_posr->R+2) > 0) ? REAL(-1.0) : REAL(1.0); dVector3 p; p[0] = o1->final_posr->pos[0] + o1->final_posr->R[2] * ccyl->lz * REAL(0.5) * sign; p[1] = o1->final_posr->pos[1] + o1->final_posr->R[6] * ccyl->lz * REAL(0.5) * sign; p[2] = o1->final_posr->pos[2] + o1->final_posr->R[10] * ccyl->lz * REAL(0.5) * sign; dReal k = dDOT (p,plane->p); dReal depth = plane->p[3] - k + ccyl->radius; if (depth < 0) return 0; contact->normal[0] = plane->p[0]; contact->normal[1] = plane->p[1]; contact->normal[2] = plane->p[2]; contact->pos[0] = p[0] - plane->p[0] * ccyl->radius; contact->pos[1] = p[1] - plane->p[1] * ccyl->radius; contact->pos[2] = p[2] - plane->p[2] * ccyl->radius; contact->depth = depth; int ncontacts = 1; if ((flags & NUMC_MASK) >= 2) { // collide the other capping sphere with the plane p[0] = o1->final_posr->pos[0] - o1->final_posr->R[2] * ccyl->lz * REAL(0.5) * sign; p[1] = o1->final_posr->pos[1] - o1->final_posr->R[6] * ccyl->lz * REAL(0.5) * sign; p[2] = o1->final_posr->pos[2] - o1->final_posr->R[10] * ccyl->lz * REAL(0.5) * sign; k = dDOT (p,plane->p); depth = plane->p[3] - k + ccyl->radius; if (depth >= 0) { dContactGeom *c2 = CONTACT(contact,skip); c2->normal[0] = plane->p[0]; c2->normal[1] = plane->p[1]; c2->normal[2] = plane->p[2]; c2->pos[0] = p[0] - plane->p[0] * ccyl->radius; c2->pos[1] = p[1] - plane->p[1] * ccyl->radius; c2->pos[2] = p[2] - plane->p[2] * ccyl->radius; c2->depth = depth; ncontacts = 2; } } for (int i=0; i < ncontacts; i++) { CONTACT(contact,i*skip)->g1 = o1; CONTACT(contact,i*skip)->g2 = o2; } return ncontacts; } // if mode==1 then use the sphere exit contact, not the entry contact static int ray_sphere_helper (dxRay *ray, dVector3 sphere_pos, dReal radius, dContactGeom *contact, int mode) { dVector3 q; q[0] = ray->final_posr->pos[0] - sphere_pos[0]; q[1] = ray->final_posr->pos[1] - sphere_pos[1]; q[2] = ray->final_posr->pos[2] - sphere_pos[2]; dReal B = dDOT14(q,ray->final_posr->R+2); dReal C = dDOT(q,q) - radius*radius; // note: if C <= 0 then the start of the ray is inside the sphere dReal k = B*B - C; if (k < 0) return 0; k = dSqrt(k); dReal alpha; if (mode && C >= 0) { alpha = -B + k; if (alpha < 0) return 0; } else { alpha = -B - k; if (alpha < 0) { alpha = -B + k; if (alpha < 0) return 0; } } if (alpha > ray->length) return 0; contact->pos[0] = ray->final_posr->pos[0] + alpha*ray->final_posr->R[0*4+2]; contact->pos[1] = ray->final_posr->pos[1] + alpha*ray->final_posr->R[1*4+2]; contact->pos[2] = ray->final_posr->pos[2] + alpha*ray->final_posr->R[2*4+2]; dReal nsign = (C < 0 || mode) ? REAL(-1.0) : REAL(1.0); contact->normal[0] = nsign*(contact->pos[0] - sphere_pos[0]); contact->normal[1] = nsign*(contact->pos[1] - sphere_pos[1]); contact->normal[2] = nsign*(contact->pos[2] - sphere_pos[2]); dNormalize3 (contact->normal); contact->depth = alpha; return 1; } int dCollideRaySphere (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dRayClass); dIASSERT (o2->type == dSphereClass); dxRay *ray = (dxRay*) o1; dxSphere *sphere = (dxSphere*) o2; contact->g1 = ray; contact->g2 = sphere; return ray_sphere_helper (ray,sphere->final_posr->pos,sphere->radius,contact,0); } int dCollideRayBox (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dRayClass); dIASSERT (o2->type == dBoxClass); dxRay *ray = (dxRay*) o1; dxBox *box = (dxBox*) o2; contact->g1 = ray; contact->g2 = box; int i; // compute the start and delta of the ray relative to the box. // we will do all subsequent computations in this box-relative coordinate // system. we have to do a translation and rotation for each point. dVector3 tmp,s,v; tmp[0] = ray->final_posr->pos[0] - box->final_posr->pos[0]; tmp[1] = ray->final_posr->pos[1] - box->final_posr->pos[1]; tmp[2] = ray->final_posr->pos[2] - box->final_posr->pos[2]; dMULTIPLY1_331 (s,box->final_posr->R,tmp); tmp[0] = ray->final_posr->R[0*4+2]; tmp[1] = ray->final_posr->R[1*4+2]; tmp[2] = ray->final_posr->R[2*4+2]; dMULTIPLY1_331 (v,box->final_posr->R,tmp); // mirror the line so that v has all components >= 0 dVector3 sign; for (i=0; i<3; i++) { if (v[i] < 0) { s[i] = -s[i]; v[i] = -v[i]; sign[i] = 1; } else sign[i] = -1; } // compute the half-sides of the box dReal h[3]; h[0] = REAL(0.5) * box->side[0]; h[1] = REAL(0.5) * box->side[1]; h[2] = REAL(0.5) * box->side[2]; // do a few early exit tests if ((s[0] < -h[0] && v[0] <= 0) || s[0] > h[0] || (s[1] < -h[1] && v[1] <= 0) || s[1] > h[1] || (s[2] < -h[2] && v[2] <= 0) || s[2] > h[2] || (v[0] == 0 && v[1] == 0 && v[2] == 0)) { return 0; } // compute the t=[lo..hi] range for where s+v*t intersects the box dReal lo = -dInfinity; dReal hi = dInfinity; int nlo = 0, nhi = 0; for (i=0; i<3; i++) { if (v[i] != 0) { dReal k = (-h[i] - s[i])/v[i]; if (k > lo) { lo = k; nlo = i; } k = (h[i] - s[i])/v[i]; if (k < hi) { hi = k; nhi = i; } } } // check if the ray intersects if (lo > hi) return 0; dReal alpha; int n; if (lo >= 0) { alpha = lo; n = nlo; } else { alpha = hi; n = nhi; } if (alpha < 0 || alpha > ray->length) return 0; contact->pos[0] = ray->final_posr->pos[0] + alpha*ray->final_posr->R[0*4+2]; contact->pos[1] = ray->final_posr->pos[1] + alpha*ray->final_posr->R[1*4+2]; contact->pos[2] = ray->final_posr->pos[2] + alpha*ray->final_posr->R[2*4+2]; contact->normal[0] = box->final_posr->R[0*4+n] * sign[n]; contact->normal[1] = box->final_posr->R[1*4+n] * sign[n]; contact->normal[2] = box->final_posr->R[2*4+n] * sign[n]; contact->depth = alpha; return 1; } int dCollideRayCCylinder (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dRayClass); dIASSERT (o2->type == dCCylinderClass); dxRay *ray = (dxRay*) o1; dxCCylinder *ccyl = (dxCCylinder*) o2; contact->g1 = ray; contact->g2 = ccyl; dReal lz2 = ccyl->lz * REAL(0.5); // compute some useful info dVector3 cs,q,r; dReal C,k; cs[0] = ray->final_posr->pos[0] - ccyl->final_posr->pos[0]; cs[1] = ray->final_posr->pos[1] - ccyl->final_posr->pos[1]; cs[2] = ray->final_posr->pos[2] - ccyl->final_posr->pos[2]; k = dDOT41(ccyl->final_posr->R+2,cs); // position of ray start along ccyl axis q[0] = k*ccyl->final_posr->R[0*4+2] - cs[0]; q[1] = k*ccyl->final_posr->R[1*4+2] - cs[1]; q[2] = k*ccyl->final_posr->R[2*4+2] - cs[2]; C = dDOT(q,q) - ccyl->radius*ccyl->radius; // if C < 0 then ray start position within infinite extension of cylinder // see if ray start position is inside the capped cylinder int inside_ccyl = 0; if (C < 0) { if (k < -lz2) k = -lz2; else if (k > lz2) k = lz2; r[0] = ccyl->final_posr->pos[0] + k*ccyl->final_posr->R[0*4+2]; r[1] = ccyl->final_posr->pos[1] + k*ccyl->final_posr->R[1*4+2]; r[2] = ccyl->final_posr->pos[2] + k*ccyl->final_posr->R[2*4+2]; if ((ray->final_posr->pos[0]-r[0])*(ray->final_posr->pos[0]-r[0]) + (ray->final_posr->pos[1]-r[1])*(ray->final_posr->pos[1]-r[1]) + (ray->final_posr->pos[2]-r[2])*(ray->final_posr->pos[2]-r[2]) < ccyl->radius*ccyl->radius) { inside_ccyl = 1; } } // compute ray collision with infinite cylinder, except for the case where // the ray is outside the capped cylinder but within the infinite cylinder // (it that case the ray can only hit endcaps) if (!inside_ccyl && C < 0) { // set k to cap position to check if (k < 0) k = -lz2; else k = lz2; } else { dReal uv = dDOT44(ccyl->final_posr->R+2,ray->final_posr->R+2); r[0] = uv*ccyl->final_posr->R[0*4+2] - ray->final_posr->R[0*4+2]; r[1] = uv*ccyl->final_posr->R[1*4+2] - ray->final_posr->R[1*4+2]; r[2] = uv*ccyl->final_posr->R[2*4+2] - ray->final_posr->R[2*4+2]; dReal A = dDOT(r,r); dReal B = 2*dDOT(q,r); k = B*B-4*A*C; if (k < 0) { // the ray does not intersect the infinite cylinder, but if the ray is // inside and parallel to the cylinder axis it may intersect the end // caps. set k to cap position to check. if (!inside_ccyl) return 0; if (uv < 0) k = -lz2; else k = lz2; } else { k = dSqrt(k); A = dRecip (2*A); dReal alpha = (-B-k)*A; if (alpha < 0) { alpha = (-B+k)*A; if (alpha < 0) return 0; } if (alpha > ray->length) return 0; // the ray intersects the infinite cylinder. check to see if the // intersection point is between the caps contact->pos[0] = ray->final_posr->pos[0] + alpha*ray->final_posr->R[0*4+2]; contact->pos[1] = ray->final_posr->pos[1] + alpha*ray->final_posr->R[1*4+2]; contact->pos[2] = ray->final_posr->pos[2] + alpha*ray->final_posr->R[2*4+2]; q[0] = contact->pos[0] - ccyl->final_posr->pos[0]; q[1] = contact->pos[1] - ccyl->final_posr->pos[1]; q[2] = contact->pos[2] - ccyl->final_posr->pos[2]; k = dDOT14(q,ccyl->final_posr->R+2); dReal nsign = inside_ccyl ? REAL(-1.0) : REAL(1.0); if (k >= -lz2 && k <= lz2) { contact->normal[0] = nsign * (contact->pos[0] - (ccyl->final_posr->pos[0] + k*ccyl->final_posr->R[0*4+2])); contact->normal[1] = nsign * (contact->pos[1] - (ccyl->final_posr->pos[1] + k*ccyl->final_posr->R[1*4+2])); contact->normal[2] = nsign * (contact->pos[2] - (ccyl->final_posr->pos[2] + k*ccyl->final_posr->R[2*4+2])); dNormalize3 (contact->normal); contact->depth = alpha; return 1; } // the infinite cylinder intersection point is not between the caps. // set k to cap position to check. if (k < 0) k = -lz2; else k = lz2; } } // check for ray intersection with the caps. k must indicate the cap // position to check q[0] = ccyl->final_posr->pos[0] + k*ccyl->final_posr->R[0*4+2]; q[1] = ccyl->final_posr->pos[1] + k*ccyl->final_posr->R[1*4+2]; q[2] = ccyl->final_posr->pos[2] + k*ccyl->final_posr->R[2*4+2]; return ray_sphere_helper (ray,q,ccyl->radius,contact, inside_ccyl); } int dCollideRayPlane (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dRayClass); dIASSERT (o2->type == dPlaneClass); dxRay *ray = (dxRay*) o1; dxPlane *plane = (dxPlane*) o2; dReal alpha = plane->p[3] - dDOT (plane->p,ray->final_posr->pos); // note: if alpha > 0 the starting point is below the plane dReal nsign = (alpha > 0) ? REAL(-1.0) : REAL(1.0); dReal k = dDOT14(plane->p,ray->final_posr->R+2); if (k==0) return 0; // ray parallel to plane alpha /= k; if (alpha < 0 || alpha > ray->length) return 0; contact->pos[0] = ray->final_posr->pos[0] + alpha*ray->final_posr->R[0*4+2]; contact->pos[1] = ray->final_posr->pos[1] + alpha*ray->final_posr->R[1*4+2]; contact->pos[2] = ray->final_posr->pos[2] + alpha*ray->final_posr->R[2*4+2]; contact->normal[0] = nsign*plane->p[0]; contact->normal[1] = nsign*plane->p[1]; contact->normal[2] = nsign*plane->p[2]; contact->depth = alpha; contact->g1 = ray; contact->g2 = plane; return 1; } #ifdef dCYLINDER_ENABLED // flat cylinder public API dxCylinder::dxCylinder (dSpaceID space, dReal _radius, dReal _length) : dxGeom (space,1) { dAASSERT (_radius > 0 && _length > 0); type = dCylinderClass; radius = _radius; lz = _length; } void dxCylinder::computeAABB() { const dMatrix3& R = final_posr->R; const dVector3& pos = final_posr->pos; dReal xrange = dFabs (R[0] * radius) + dFabs (R[1] * radius) + REAL(0.5)* dFabs (R[2] * lz); dReal yrange = dFabs (R[4] * radius) + dFabs (R[5] * radius) + REAL(0.5)* dFabs (R[6] * lz); dReal zrange = dFabs (R[8] * radius) + dFabs (R[9] * radius) + REAL(0.5)* dFabs (R[10] * lz); aabb[0] = pos[0] - xrange; aabb[1] = pos[0] + xrange; aabb[2] = pos[1] - yrange; aabb[3] = pos[1] + yrange; aabb[4] = pos[2] - zrange; aabb[5] = pos[2] + zrange; } dGeomID dCreateCylinder (dSpaceID space, dReal radius, dReal length) { return new dxCylinder (space,radius,length); } void dGeomCylinderSetParams (dGeomID cylinder, dReal radius, dReal length) { dUASSERT (cylinder && cylinder->type == dCylinderClass,"argument not a ccylinder"); dAASSERT (radius > 0 && length > 0); dxCylinder *c = (dxCylinder*) cylinder; c->radius = radius; c->lz = length; dGeomMoved (cylinder); } void dGeomCylinderGetParams (dGeomID cylinder, dReal *radius, dReal *length) { dUASSERT (cylinder && cylinder->type == dCylinderClass,"argument not a ccylinder"); dxCylinder *c = (dxCylinder*) cylinder; *radius = c->radius; *length = c->lz; } #endif