/*************************************************************************
 *                                                                       *
 * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
 * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
 *                                                                       *
 * This library is free software; you can redistribute it and/or         *
 * modify it under the terms of EITHER:                                  *
 *   (1) The GNU Lesser General Public License as published by the Free  *
 *       Software Foundation; either version 2.1 of the License, or (at  *
 *       your option) any later version. The text of the GNU Lesser      *
 *       General Public License is included with this library in the     *
 *       file LICENSE.TXT.                                               *
 *   (2) The BSD-style license that is included with this library in     *
 *       the file LICENSE-BSD.TXT.                                       *
 *                                                                       *
 * This library is distributed in the hope that it will be useful,       *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
 * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
 *                                                                       *
 *************************************************************************/

#include "ode/ode.h"
#include "objects.h"
#include "joint.h"
#include "util.h"

#define ALLOCA dALLOCA16

//****************************************************************************
// Auto disabling

void dInternalHandleAutoDisabling (dxWorld *world, dReal stepsize)
{
	dxBody *bb;
	for (bb=world->firstbody; bb; bb=(dxBody*)bb->next) {
		// nothing to do unless this body is currently enabled and has
		// the auto-disable flag set
		if ((bb->flags & (dxBodyAutoDisable|dxBodyDisabled)) != dxBodyAutoDisable) continue;
		
		// see if the body is idle
		int idle = 1;			// initial assumption
		dReal lspeed2 = dDOT(bb->lvel,bb->lvel);
		if (lspeed2 > bb->adis.linear_threshold) {
			idle = 0;		// moving fast - not idle
		}
		else {
			dReal aspeed = dDOT(bb->avel,bb->avel);
			if (aspeed > bb->adis.angular_threshold) {
				idle = 0;	// turning fast - not idle
			}
		}
	
		// if it's idle, accumulate steps and time.
		// these counters won't overflow because this code doesn't run for disabled bodies.
		if (idle) {
			bb->adis_stepsleft--;
			bb->adis_timeleft -= stepsize;
		}
		else {
			bb->adis_stepsleft = bb->adis.idle_steps;
			bb->adis_timeleft = bb->adis.idle_time;
		}

		// disable the body if it's idle for a long enough time
		if (bb->adis_stepsleft < 0 && bb->adis_timeleft < 0) {
			bb->flags |= dxBodyDisabled;
		}
	}
}


//****************************************************************************
// body rotation

// return sin(x)/x. this has a singularity at 0 so special handling is needed
// for small arguments.

static inline dReal sinc (dReal x)
{
  // if |x| < 1e-4 then use a taylor series expansion. this two term expansion
  // is actually accurate to one LS bit within this range if double precision
  // is being used - so don't worry!
  if (dFabs(x) < 1.0e-4) return REAL(1.0) - x*x*REAL(0.166666666666666666667);
  else return dSin(x)/x;
}


// given a body b, apply its linear and angular rotation over the time
// interval h, thereby adjusting its position and orientation.

void dxStepBody (dxBody *b, dReal h)
{
  int j;

  // handle linear velocity
  for (j=0; j<3; j++) b->posr.pos[j] += h * b->lvel[j];

  if (b->flags & dxBodyFlagFiniteRotation) {
    dVector3 irv;	// infitesimal rotation vector
    dQuaternion q;	// quaternion for finite rotation

    if (b->flags & dxBodyFlagFiniteRotationAxis) {
      // split the angular velocity vector into a component along the finite
      // rotation axis, and a component orthogonal to it.
      dVector3 frv;		// finite rotation vector
      dReal k = dDOT (b->finite_rot_axis,b->avel);
      frv[0] = b->finite_rot_axis[0] * k;
      frv[1] = b->finite_rot_axis[1] * k;
      frv[2] = b->finite_rot_axis[2] * k;
      irv[0] = b->avel[0] - frv[0];
      irv[1] = b->avel[1] - frv[1];
      irv[2] = b->avel[2] - frv[2];

      // make a rotation quaternion q that corresponds to frv * h.
      // compare this with the full-finite-rotation case below.
      h *= REAL(0.5);
      dReal theta = k * h;
      q[0] = dCos(theta);
      dReal s = sinc(theta) * h;
      q[1] = frv[0] * s;
      q[2] = frv[1] * s;
      q[3] = frv[2] * s;
    }
    else {
      // make a rotation quaternion q that corresponds to w * h
      dReal wlen = dSqrt (b->avel[0]*b->avel[0] + b->avel[1]*b->avel[1] +
			  b->avel[2]*b->avel[2]);
      h *= REAL(0.5);
      dReal theta = wlen * h;
      q[0] = dCos(theta);
      dReal s = sinc(theta) * h;
      q[1] = b->avel[0] * s;
      q[2] = b->avel[1] * s;
      q[3] = b->avel[2] * s;
    }

    // do the finite rotation
    dQuaternion q2;
    dQMultiply0 (q2,q,b->q);
    for (j=0; j<4; j++) b->q[j] = q2[j];

    // do the infitesimal rotation if required
    if (b->flags & dxBodyFlagFiniteRotationAxis) {
      dReal dq[4];
      dWtoDQ (irv,b->q,dq);
      for (j=0; j<4; j++) b->q[j] += h * dq[j];
    }
  }
  else {
    // the normal way - do an infitesimal rotation
    dReal dq[4];
    dWtoDQ (b->avel,b->q,dq);
    for (j=0; j<4; j++) b->q[j] += h * dq[j];
  }

  // normalize the quaternion and convert it to a rotation matrix
  dNormalize4 (b->q);
  dQtoR (b->q,b->posr.R);

  // notify all attached geoms that this body has moved
  for (dxGeom *geom = b->geom; geom; geom = dGeomGetBodyNext (geom))
    dGeomMoved (geom);
}

//****************************************************************************
// island processing

// this groups all joints and bodies in a world into islands. all objects
// in an island are reachable by going through connected bodies and joints.
// each island can be simulated separately.
// note that joints that are not attached to anything will not be included
// in any island, an so they do not affect the simulation.
//
// this function starts new island from unvisited bodies. however, it will
// never start a new islands from a disabled body. thus islands of disabled
// bodies will not be included in the simulation. disabled bodies are
// re-enabled if they are found to be part of an active island.

void dxProcessIslands (dxWorld *world, dReal stepsize, dstepper_fn_t stepper)
{
  dxBody *b,*bb,**body;
  dxJoint *j,**joint;

  // nothing to do if no bodies
  if (world->nb <= 0) return;

  // handle auto-disabling of bodies
  dInternalHandleAutoDisabling (world,stepsize);
  
  // make arrays for body and joint lists (for a single island) to go into
  body = (dxBody**) ALLOCA (world->nb * sizeof(dxBody*));
  joint = (dxJoint**) ALLOCA (world->nj * sizeof(dxJoint*));
  int bcount = 0;	// number of bodies in `body'
  int jcount = 0;	// number of joints in `joint'

  // set all body/joint tags to 0
  for (b=world->firstbody; b; b=(dxBody*)b->next) b->tag = 0;
  for (j=world->firstjoint; j; j=(dxJoint*)j->next) j->tag = 0;

  // allocate a stack of unvisited bodies in the island. the maximum size of
  // the stack can be the lesser of the number of bodies or joints, because
  // new bodies are only ever added to the stack by going through untagged
  // joints. all the bodies in the stack must be tagged!
  int stackalloc = (world->nj < world->nb) ? world->nj : world->nb;
  dxBody **stack = (dxBody**) ALLOCA (stackalloc * sizeof(dxBody*));

  for (bb=world->firstbody; bb; bb=(dxBody*)bb->next) {
    // get bb = the next enabled, untagged body, and tag it
    if (bb->tag || (bb->flags & dxBodyDisabled)) continue;
    bb->tag = 1;

    // tag all bodies and joints starting from bb.
    int stacksize = 0;
    b = bb;
    body[0] = bb;
    bcount = 1;
    jcount = 0;
    goto quickstart;
    while (stacksize > 0) {
      b = stack[--stacksize];	// pop body off stack
      body[bcount++] = b;	// put body on body list
      quickstart:

      // traverse and tag all body's joints, add untagged connected bodies
      // to stack
      for (dxJointNode *n=b->firstjoint; n; n=n->next) {
	if (!n->joint->tag) {
	  n->joint->tag = 1;
	  joint[jcount++] = n->joint;
	  if (n->body && !n->body->tag) {
	    n->body->tag = 1;
	    stack[stacksize++] = n->body;
	  }
	}
      }
      dIASSERT(stacksize <= world->nb);
      dIASSERT(stacksize <= world->nj);
    }

    // now do something with body and joint lists
    stepper (world,body,bcount,joint,jcount,stepsize);

    // what we've just done may have altered the body/joint tag values.
    // we must make sure that these tags are nonzero.
    // also make sure all bodies are in the enabled state.
    int i;
    for (i=0; i<bcount; i++) {
      body[i]->tag = 1;
      body[i]->flags &= ~dxBodyDisabled;
    }
    for (i=0; i<jcount; i++) joint[i]->tag = 1;
  }

  // if debugging, check that all objects (except for disabled bodies,
  // unconnected joints, and joints that are connected to disabled bodies)
  // were tagged.
# ifndef dNODEBUG
  for (b=world->firstbody; b; b=(dxBody*)b->next) {
    if (b->flags & dxBodyDisabled) {
      if (b->tag) dDebug (0,"disabled body tagged");
    }
    else {
      if (!b->tag) dDebug (0,"enabled body not tagged");
    }
  }
  for (j=world->firstjoint; j; j=(dxJoint*)j->next) {
    if ((j->node[0].body && (j->node[0].body->flags & dxBodyDisabled)==0) ||
	(j->node[1].body && (j->node[1].body->flags & dxBodyDisabled)==0)) {
      if (!j->tag) dDebug (0,"attached enabled joint not tagged");
    }
    else {
      if (j->tag) dDebug (0,"unattached or disabled joint tagged");
    }
  }
# endif
}


syntax highlighted by Code2HTML, v. 0.9.1