/* * Open BEAGLE * Copyright (C) 2001-2005 by Christian Gagne and Marc Parizeau * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Contact: * Laboratoire de Vision et Systemes Numeriques * Departement de genie electrique et de genie informatique * Universite Laval, Quebec, Canada, G1K 7P4 * http://vision.gel.ulaval.ca * */ /*! * \file beagle/GP/src/CrossoverOp.cpp * \brief Source code of class GP::CrossoverOp. * \author Christian Gagne * \author Marc Parizeau * $Revision: 1.12 $ * $Date: 2005/10/04 16:25:10 $ */ #include "beagle/GP.hpp" #include #include using namespace Beagle; /*! * \brief Construct a GP crossover operator. * \param inMatingPbName Individual mating probability parameter name used in register. * \param inDistribPbName Distribution probability parameter name used in register. * \param inName Name of the operator. */ GP::CrossoverOp::CrossoverOp(Beagle::string inMatingPbName, Beagle::string inDistribPbName, Beagle::string inName) : Beagle::CrossoverOp(inMatingPbName, inName), mDistribPbName(inDistribPbName) { } /*! * \brief Initialize the GP crossover operator. * \param ioSystem System of the evolution. */ void GP::CrossoverOp::initialize(Beagle::System& ioSystem) { Beagle_StackTraceBeginM(); Beagle::CrossoverOp::initialize(ioSystem); if(ioSystem.getRegister().isRegistered(mMatingProbaName)) { ioSystem.getRegister().deleteEntry(mMatingProbaName); } if(ioSystem.getRegister().isRegistered(mMatingProbaName)) { mMatingProba = castHandleT(ioSystem.getRegister()[mMatingProbaName]); } else { mMatingProba = new Float(float(0.9)); Register::Description lDescription( "Individual crossover probability", "Float", "0.9", "Individual crossover probability at each generation." ); ioSystem.getRegister().addEntry(mMatingProbaName, mMatingProba, lDescription); } if(ioSystem.getRegister().isRegistered(mDistribPbName)) { mDistributionProba = castHandleT(ioSystem.getRegister()[mDistribPbName]); } else { mDistributionProba = new Float(float(0.9)); string lLongDescrip = "Probability that a crossover point is a branch "; lLongDescrip += "(node with sub-trees). Value of 1.0 means that all crossover points are "; lLongDescrip += "branches, and value of 0.0 means that all crossover points are leaves."; Register::Description lDescription( "Crossover distribution prob.", "Float", "0.9", lLongDescrip ); ioSystem.getRegister().addEntry(mDistribPbName, mDistributionProba, lDescription); } if(ioSystem.getRegister().isRegistered("gp.tree.maxdepth")) { mMaxTreeDepth = castHandleT(ioSystem.getRegister()["gp.tree.maxdepth"]); } else { mMaxTreeDepth = new UInt(17); Register::Description lDescription( "Maximum tree depth", "UInt", "17", "Maximum allowed depth for the trees." ); ioSystem.getRegister().addEntry("gp.tree.maxdepth", mMaxTreeDepth, lDescription); } if(ioSystem.getRegister().isRegistered("gp.try")) { mNumberAttempts = castHandleT(ioSystem.getRegister()["gp.try"]); } else { mNumberAttempts = new UInt(2); string lLongDescrip = "Maximum number of attempts to modify a GP tree in a genetic "; lLongDescrip += "operation. As there is topological constraints on GP trees (i.e. tree "; lLongDescrip += "depth limit), it is often necessary to try a genetic operation several times."; Register::Description lDescription( "Max number of attempts", "UInt", "2", lLongDescrip ); ioSystem.getRegister().addEntry("gp.try", mNumberAttempts, lDescription); } Beagle_StackTraceEndM("void GP::CrossoverOp::initialize(Beagle::System& ioSystem)"); } /*! * \brief Mate two GP individuals for a crossover. * \param ioIndiv1 First individual to mate. * \param ioContext1 Evolutionary context of the first individual. * \param ioIndiv2 Second individual to mate. * \param ioContext2 Evolutionary context of the second individual. * \return True if the individuals are effectively mated, false if not. */ bool GP::CrossoverOp::mate(Beagle::Individual& ioIndiv1, Beagle::Context& ioContext1, Beagle::Individual& ioIndiv2, Beagle::Context& ioContext2) { Beagle_StackTraceBeginM(); // Initial parameters checks Beagle_AssertM(ioIndiv1.size() > 0); Beagle_AssertM(ioIndiv1.size() == ioIndiv2.size()); Beagle_ValidateParameterM(mNumberAttempts->getWrappedValue()>0,"gp.try",">0"); // Cast method arguments. GP::Individual& lIndiv1 = castObjectT(ioIndiv1); GP::Individual& lIndiv2 = castObjectT(ioIndiv2); GP::Context& lContext1 = castObjectT(ioContext1); GP::Context& lContext2 = castObjectT(ioContext2); // Get parameters in local values, with the total number of nodes of an individual. bool lMatingDone = false; float lDistrProba = mDistributionProba->getWrappedValue(); unsigned int lMaxTreeDepth = mMaxTreeDepth->getWrappedValue(); GP::Tree::Handle lOldTreeHandle1 = lContext1.getGenotypeHandle(); unsigned int lOldTreeIndex1 = lContext1.getGenotypeIndex(); GP::Tree::Handle lOldTreeHandle2 = lContext2.getGenotypeHandle(); unsigned int lOldTreeIndex2 = lContext2.getGenotypeIndex(); unsigned int lSizeIndiv1 = 0; for(unsigned int i=0; isize(); Beagle_LogDebugM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", string("First individual to mate (before GP crossover): ")+ lIndiv1.serialize() ); Beagle_LogDebugM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", string("Second individual to mate (before GP crossover): ")+ lIndiv2.serialize() ); // Crossover loop. Try the given number of attempts to mate two individuals. for(unsigned int lAttempt=0; lAttemptgetWrappedValue(); lAttempt++) { // Choose a node in all the individual node. unsigned int lChoosenNode1 = lContext1.getSystem().getRandomizer().rollInteger(0, lSizeIndiv1-1); // Get the tree in which the choosen node is. Change the global node index to the tree's index. unsigned int lChoosenTree1 = 0; for(; lChoosenTree1size()) break; Beagle_AssertM(lChoosenNode1 >= lIndiv1[lChoosenTree1]->size()); lChoosenNode1 -= lIndiv1[lChoosenTree1]->size(); } Beagle_AssertM(lChoosenTree1 < lIndiv1.size()); // Choose a type of node (branch or leaf) following the distribution probability and change the // node for another node of the same tree if the types mismatch. GP::Tree& lTree1 = *lIndiv1[lChoosenTree1]; const unsigned int lPrimitiveSetIndex1 = lTree1.getPrimitiveSetIndex(); if(lTree1.size() > 1) { bool lTypeNode1 = (lContext1.getSystem().getRandomizer().rollUniform(0.0, 1.0) < lDistrProba); while((lTree1[lChoosenNode1].mPrimitive->getNumberArguments() != 0) != lTypeNode1) { lChoosenNode1 = lContext1.getSystem().getRandomizer().rollInteger(0, lTree1.size()-1); } } // Choose a node in the second individual from a tree with the same primitive set index. unsigned int lSizeIndiv2 = 0; for(unsigned int i=0; igetPrimitiveSetIndex() == lPrimitiveSetIndex1) { lSizeIndiv2 += lIndiv2[i]->size(); } } // Check to see that there is at least one node that can be selected if(lSizeIndiv2==0) { Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverConstrainedOp", string("Crossover attempt failed: The tree chosen from the first individual has a primitive set index of ")+ uint2str(lPrimitiveSetIndex1)+ string(" and there are no trees in the second individual with that primitive set index") ); continue; } // Choose a node in the second individual unsigned int lChoosenNode2 = lContext2.getSystem().getRandomizer().rollInteger(0, lSizeIndiv2-1); // Find which tree the choosen node is in. unsigned int lChoosenTree2 = 0; for(; lChoosenTree2getPrimitiveSetIndex() == lPrimitiveSetIndex1) { if(lChoosenNode2 < lIndiv2[lChoosenTree2]->size()) break; Beagle_AssertM(lChoosenNode2 >= lIndiv2[lChoosenTree2]->size()); lChoosenNode2 -= lIndiv2[lChoosenTree2]->size(); } } Beagle_AssertM(lChoosenTree2 < lIndiv2.size()); GP::Tree& lTree2 = *lIndiv2[lChoosenTree2]; // Choose a type of node (branch or leaf) following the distribution probability and change the // node for another node of the same tree if the types mismatch. if(lTree2.size() > 1) { bool lTypeNode2 = (lContext2.getSystem().getRandomizer().rollUniform(0.0, 1.0) < lDistrProba); while((lTree2[lChoosenNode2].mPrimitive->getNumberArguments() != 0) != lTypeNode2) { lChoosenNode2 = lContext2.getSystem().getRandomizer().rollInteger(0, lTree2.size()-1); } } // Set the first context to the node of the first tree. // Check if depth is ok. Do a new crossover attempt if not. lTree1.setContextToNode(lChoosenNode1, lContext1); unsigned int lNewDepthTree1 = lContext1.getCallStackSize() + lTree2.getTreeDepth(lChoosenNode2) - 1; if(lNewDepthTree1 > lMaxTreeDepth) { Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverConstrainedOp", string("Crossover attempt failed because the depth of the resulting tree in the ")+ string("first individual would exceed the depth constraint") ); continue; } // Set the first context to the node of the second tree. // Check if depth is ok. Do a new crossover attempt if not. lTree2.setContextToNode(lChoosenNode2, lContext2); unsigned int lNewDepthTree2 = lContext2.getCallStackSize() + lTree1.getTreeDepth(lChoosenNode1) - 1; if(lNewDepthTree2 > lMaxTreeDepth) { Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverConstrainedOp", string("Crossover attempt failed because the depth of the resulting tree in the ")+ string("second individual would exceed the depth constraint") ); continue; } // Mate the trees. Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", string("Trying to mate the ")+uint2ordinal(lChoosenTree1+1)+ string(" tree of the first individual with the ")+uint2ordinal(lChoosenTree2+1)+ string(" tree of the second individual") ); Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", string("Trying to exchange the ")+uint2ordinal(lChoosenNode1+1)+ string(" node of the first tree with the ")+uint2ordinal(lChoosenNode2+1)+ string(" node of the second tree") ); mateTrees(lTree1, lChoosenNode1, lContext1, lTree2, lChoosenNode2, lContext2); lMatingDone = true; Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", "GP crossover valid" ); break; // The crossover is valid. } // Replace the contexts. lContext1.setGenotypeHandle(lOldTreeHandle1); lContext1.setGenotypeIndex(lOldTreeIndex1); lContext2.setGenotypeHandle(lOldTreeHandle2); lContext2.setGenotypeIndex(lOldTreeIndex2); if(lMatingDone) { Beagle_LogDebugM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", string("First individual mated (after GP crossover): ")+ lIndiv1.serialize() ); Beagle_LogDebugM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", string("Second individual mated (after GP crossover): ")+ lIndiv2.serialize() ); } else { Beagle_LogVerboseM( ioContext1.getSystem().getLogger(), "crossover", "Beagle::GP::CrossoverOp", "No GP crossover done" ); } return lMatingDone; Beagle_StackTraceEndM("bool GP::CrossoverOp::mate(Beagle::Individual& ioIndiv1, Beagle::Context& ioContext1, Beagle::Individual& ioIndiv2, Beagle::Context& ioContext2)"); } /*! * \brief Mate two GP trees on given points. * \param ioTree1 First tree to mate. * \param inNode1 Node index of the croosover point in the first tree to mate. * \param ioContext1 Evolutionary context relatively to the first tree. * \param ioTree2 Second tree to mate. * \param inNode2 Node index of the croosover point in the second tree to mate. * \param ioContext2 Evolutionary context relatively to the second tree. */ void GP::CrossoverOp::mateTrees(GP::Tree& ioTree1, unsigned int inNode1, GP::Context& ioContext1, GP::Tree& ioTree2, unsigned int inNode2, GP::Context& ioContext2) { Beagle_StackTraceBeginM(); Beagle_AssertM(&ioTree1 != &ioTree2); unsigned int lSwapSize1 = ioTree1[inNode1].mSubTreeSize; unsigned int lSwapSize2 = ioTree2[inNode2].mSubTreeSize; if(lSwapSize1 <= lSwapSize2) { std::swap_ranges(ioTree1.begin()+inNode1, ioTree1.begin()+inNode1+lSwapSize1, ioTree2.begin()+inNode2); ioTree1.insert(ioTree1.begin()+inNode1+lSwapSize1, ioTree2.begin()+inNode2+lSwapSize1, ioTree2.begin()+inNode2+lSwapSize2); ioTree2.erase(ioTree2.begin()+inNode2+lSwapSize1, ioTree2.begin()+inNode2+lSwapSize2); } else { std::swap_ranges(ioTree1.begin()+inNode1, ioTree1.begin()+inNode1+lSwapSize2, ioTree2.begin()+inNode2); ioTree2.insert(ioTree2.begin()+inNode2+lSwapSize2, ioTree1.begin()+inNode1+lSwapSize2, ioTree1.begin()+inNode1+lSwapSize1); ioTree1.erase(ioTree1.begin()+inNode1+lSwapSize2, ioTree1.begin()+inNode1+lSwapSize1); } int lDiffSize = lSwapSize1 - lSwapSize2; for(unsigned int i=0; i<(ioContext1.getCallStackSize()-1); i++) ioTree1[ioContext1.getCallStackElement(i)].mSubTreeSize -= lDiffSize; for(unsigned int j=0; j<(ioContext2.getCallStackSize()-1); j++) ioTree2[ioContext2.getCallStackElement(j)].mSubTreeSize += lDiffSize; Beagle_StackTraceEndM("void GP::CrossoverOp::mateTrees(GP::Tree& ioTree1, unsigned int inNode1, GP::Context& ioContext1, GP::Tree& ioTree2, unsigned int inNode2, GP::Context& ioContext2)"); } /*! * \brief Read a crossover operator for XML subtree. * \param inIter XML iterator to use to read crossover operator. * \param inOpMap Operator map to use to read crossover operator. */ void GP::CrossoverOp::readWithMap(PACC::XML::ConstIterator inIter, OperatorMap& inOpMap) { Beagle_StackTraceBeginM(); if((inIter->getType()!=PACC::XML::eData) || (inIter->getValue()!=getName().c_str())) { std::ostringstream lOSS; lOSS << "tag <" << getName() << "> expected!" << std::flush; throw Beagle_IOExceptionNodeM(*inIter, lOSS.str().c_str()); } string mMatingProbaReadName = inIter->getAttribute("matingpb").c_str(); if(mMatingProbaReadName.empty() == false) mMatingProbaName = mMatingProbaReadName; string mDistribPbReadName = inIter->getAttribute("distrpb").c_str(); if(mDistribPbReadName.empty() == false) mDistribPbName = mDistribPbReadName; Beagle_StackTraceEndM("void GP::CrossoverOp::readWithMap(PACC::XML::ConstIterator inIter, OperatorMap& inOpMap)"); } /*! * \brief Write crossover operator into XML streamer. * \param ioStreamer XML streamer to write crossover operator into. * \param inIndent Whether XML output should be indented. */ void GP::CrossoverOp::writeContent(PACC::XML::Streamer& ioStreamer, bool inIndent) const { Beagle_StackTraceBeginM(); Beagle::CrossoverOp::writeContent(ioStreamer, inIndent); ioStreamer.insertAttribute("distrpb", mDistribPbName); Beagle_StackTraceEndM("void GP::CrossoverOp::writeContent(PACC::XML::Streamer& ioStreamer, bool inIndent) const"); }