package Contextual::Return; # Fake out CORE::GLOBAL::caller and Carp very early... BEGIN { no warnings 'redefine'; *CORE::GLOBAL::caller = sub { my ($uplevels) = shift || 0; return CORE::caller($uplevels + 2 + $Contextual::Return::uplevel) if $Contextual::Return::uplevel; return CORE::caller($uplevels + 1); }; use Carp; my $real_carp = *Carp::carp{CODE}; my $real_croak = *Carp::croak{CODE}; *Carp::carp = sub { goto &{$real_carp} if !$Contextual::Return::uplevel; warn _in_context(@_); }; *Carp::croak = sub { goto &{$real_croak} if !$Contextual::Return::uplevel; die _in_context(@_); }; } use version; $VERSION = qv('0.2.1'); use warnings; use strict; sub _in_context { my $msg = join q{}, @_; # Start looking in caller... my $stack_frame = 1; my ($package, $file, $line, $sub) = CORE::caller($stack_frame++); my ($orig_package, $prev_package) = ($package) x 2; my $LOC = qq{at $file line $line}; # Walk up stack... STACK_FRAME: while (1) { my ($package, $file, $line, $sub) = CORE::caller($stack_frame++); # Fall off the top of the stack... last if !defined $package; # Ignore this module (and any helpers)... next STACK_FRAME if $package =~ m{^Contextual::Return}xms; # Track the call up the stack... $LOC = qq{at $file line $line}; # Ignore transitions within original caller... next STACK_FRAME if $package eq $orig_package && $prev_package eq $orig_package; # If we get a transition out of the original package, we're there... last STACK_FRAME; } # Insert location details... $msg =~ s//$LOC/g or $msg =~ s/[^\S\n]*$/ $LOC/; $msg =~ s/$/\n/; return $msg; } # Indentation corresponds to inherited fall-back relationships... my @CONTEXTS = qw( DEFAULT VOID NONVOID LIST SCALAR VALUE STR NUM BOOL REF SCALARREF ARRAYREF CODEREF HASHREF GLOBREF OBJREF ); my %attrs_of; my @OTHER_EXPORTS = qw( LAZY FIXED ACTIVE RVALUE LVALUE NVALUE RESULT RECOVER ); sub import { my $caller = CORE::caller; no strict qw( refs ); for my $subname (@CONTEXTS, @OTHER_EXPORTS) { *{$caller.'::'.$subname} = \&{$subname}; } if (require Contextual::Return::Failure) { *{$caller.'::FAIL'} = \&Contextual::Return::Failure::_FAIL; *FAIL_WITH = \&Contextual::Return::Failure::_FAIL_WITH; } } use Scalar::Util qw( refaddr ); # Override return value in a C::R handler... sub RESULT(&) { my ($block) = @_; # Determine call context and arg list... my $context; my $args = do { package DB; $context=(CORE::caller 1)[5]; \@DB::args }; # Hide from caller() and the enclosing eval{}... # Evaluate block in context and cache result... local $Contextual::Return::uplevel = $Contextual::Return::uplevel+1; $Contextual::Return::__RESULT__ = $context ? [[ $block->(@{$args}) ]] : defined $context ? [ scalar $block->(@{$args}) ] : do { $block->(@{$args}); [] } ; return; } sub RVALUE(&;@) :lvalue; sub LVALUE(&;@) :lvalue; sub NVALUE(&;@) :lvalue; my %opposite_of = ( 'RVALUE' => 'LVALUE or NVALUE', 'LVALUE' => 'RVALUE or NVALUE', 'NVALUE' => 'LVALUE or RVALUE', ); BEGIN { for my $subname (qw( RVALUE LVALUE NVALUE) ) { no strict 'refs'; *{$subname} = sub(&;@) :lvalue { # (handler, return_lvalue); my $handler = shift; my $impl; my $args = do{ package DB; ()=CORE::caller(1); \@DB::args }; if (@_==0) { $impl = tie $_[0], 'Contextual::Return::Lvalue', $subname => $handler, args=>$args; } elsif (@_==1 and $impl = tied $_[0]) { die _in_context "Can't install two $subname handlers" if exists $impl->{$subname}; $impl->{$subname} = $handler; } else { my $vals = join q{, }, map { tied $_ ? keys %{tied $_} : defined $_ ? $_ : 'undef' } @_; die _in_context "Expected a $opposite_of{$subname} block ", "after the $subname block ", "but found instead: $vals\n"; } # Handle void context calls... if (!defined wantarray && $impl->{NVALUE}) { # Fake out caller() and Carp... local $Contextual::Return::uplevel = 1; # Call and clear handler... $impl->{NVALUE}( @{$impl->{args}} ); delete $impl->{NVALUE}; } $_[0]; } } } sub FIXED ($) { my ($crv) = @_; $attrs_of{refaddr $crv}{FIXED} = 1; return $crv; } sub ACTIVE ($) { my ($crv) = @_; $attrs_of{refaddr $crv}{ACTIVE} = 1; return $crv; } sub LIST (;&$) { my ($block, $crv) = @_; # Handle simple context tests... return !!(CORE::caller 1)[5] if !@_; # Ensure we have an object... my $attrs; if (!refaddr $crv) { my $args = do{ package DB; ()=CORE::caller(1); \@DB::args }; my $subname = (CORE::caller(1))[3]; $crv = bless \my $scalar, 'Contextual::Return::Value'; $attrs = $attrs_of{refaddr $crv} = { args => $args, sub => $subname }; } else { $attrs = $attrs_of{refaddr $crv}; } # Handle repetitions... die _in_context "Can't install two LIST handlers" if exists $attrs->{LIST}; # Identify context... my $wantarray = wantarray; # Prepare for exception handling... my $recover = $attrs->{RECOVER}; local $Contextual::Return::uplevel = 2; # Handle list context directly... if (wantarray) { local $Contextual::Return::__RESULT__; my @rv = eval { $block->(@{$attrs->{args}}) }; if ($recover) { () = $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } return @rv if !$Contextual::Return::__RESULT__; return @{$Contextual::Return::__RESULT__->[0]}; } # Handle void context directly... if (!defined $wantarray) { for my $context (qw< VOID DEFAULT >) { my $handler = $attrs->{$context} or next; eval { $attrs->{$context}->(@{$attrs->{args}}) }; if ($recover) { $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } last; } return; } # Otherwise, cache handler... $attrs->{LIST} = $block; return $crv; } sub VOID (;&$) { my ($block, $crv) = @_; # Handle simple context tests... return !defined( (CORE::caller 1)[5] ) if !@_; # Ensure we have an object... my $attrs; if (!refaddr $crv) { my $args = do{ package DB; ()=CORE::caller(1); \@DB::args }; my $subname = (CORE::caller(1))[3]; $crv = bless \my $scalar, 'Contextual::Return::Value'; $attrs = $attrs_of{refaddr $crv} = { args => $args, sub => $subname }; } else { $attrs = $attrs_of{refaddr $crv}; } # Handle repetitions... die _in_context "Can't install two VOID handlers" if exists $attrs->{VOID}; # Identify context... my $wantarray = wantarray; # Prepare for exception handling... my $recover = $attrs->{RECOVER}; local $Contextual::Return::uplevel = 2; # Handle list context directly, if possible... if (wantarray) { local $Contextual::Return::__RESULT__; # List or ancestral handlers... for my $context (qw(LIST VALUE NONVOID DEFAULT)) { my $handler = $attrs->{$context} or next; my @rv = eval { $handler->(@{$attrs->{args}}) }; if ($recover) { () = $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } return @rv if !$Contextual::Return::__RESULT__; return @{$Contextual::Return::__RESULT__->[0]}; } # Convert to list from arrayref handler... if (my $handler = $attrs->{ARRAYREF}) { my $array_ref = eval { $handler->(@{$attrs->{args}}) }; if ($recover) { scalar $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } # Array ref may be returned directly, or via RESULT{}... $array_ref = $Contextual::Return::__RESULT__->[0] if $Contextual::Return::__RESULT__; return @{$array_ref} if (ref $array_ref||q{}) eq 'ARRAY'; } # Return scalar object as one-elem list, if possible... for my $context (qw(STR NUM SCALAR LAZY)) { return $crv if exists $attrs->{$context}; } die _in_context "Can't call $attrs->{sub} in list context"; } # Handle void context directly... if (!defined $wantarray) { eval { $block->(@{$attrs->{args}}) }; if ($recover) { $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } return; } # Otherwise, cache handler... $attrs->{VOID} = $block; return $crv; } for my $context (qw( SCALAR NONVOID )) { no strict qw( refs ); *{$context} = sub (;&$) { my ($block, $crv) = @_; # Handle simple context tests... if (!@_) { my $callers_context = (CORE::caller 1)[5]; return defined $callers_context && ($context eq 'NONVOID' || !$callers_context); } # Ensure we have an object... my $attrs; if (!refaddr $crv) { my $args = do{ package DB; ()=CORE::caller(1); \@DB::args }; my $subname = (CORE::caller(1))[3]; $crv = bless \my $scalar, 'Contextual::Return::Value'; $attrs = $attrs_of{refaddr $crv} = { args => $args, sub => $subname }; } else { $attrs = $attrs_of{refaddr $crv}; } # Make sure this block is a possibility too... die _in_context "Can't install two $context handlers" if exists $attrs->{$context}; $attrs->{$context} = $block; # Identify context... my $wantarray = wantarray; # Prepare for exception handling... my $recover = $attrs->{RECOVER}; local $Contextual::Return::uplevel = 2; # Handle list context directly, if possible... if (wantarray) { local $Contextual::Return::__RESULT__; # List or ancestral handlers... for my $context (qw(LIST VALUE NONVOID DEFAULT)) { my $handler = $attrs->{$context} or next; my @rv = eval { $handler->(@{$attrs->{args}}) }; if ($recover) { () = $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } return @rv if !$Contextual::Return::__RESULT__; return @{$Contextual::Return::__RESULT__->[0]}; } # Convert to list from arrayref handler... if (my $handler = $attrs->{ARRAYREF}) { my $array_ref = eval { $handler->(@{$attrs->{args}}) }; if ($recover) { scalar $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } # Array ref may be returned directly, or via RESULT{}... $array_ref = $Contextual::Return::__RESULT__->[0] if $Contextual::Return::__RESULT__; return @{$array_ref} if (ref $array_ref||q{}) eq 'ARRAY'; } # Return scalar object as one-elem list, if possible... for my $context (qw(STR NUM SCALAR LAZY)) { return $crv if exists $attrs->{$context}; } die _in_context "Can't call $attrs->{sub} in list context"; } # Handle void context directly... if (!defined $wantarray) { for my $context (qw< VOID DEFAULT >) { my $handler = $attrs->{$context} or next; eval { $handler->(@{$attrs->{args}}) }; if ($recover) { $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } last; } return; } # Otherwise, defer evaluation by returning an object... return $crv; } } for my $context (@CONTEXTS, qw< RECOVER >) { next if $context eq 'LIST' # These || $context eq 'VOID' # three || $context eq 'SCALAR' # handled || $context eq 'NONVOID'; # separately no strict qw( refs ); *{$context} = sub (&;$) { my ($block, $crv) = @_; # Ensure we have an object... my $attrs; if (!refaddr $crv) { my $args = do{ package DB; ()=CORE::caller(1); \@DB::args }; my $subname = (CORE::caller(1))[3]; $crv = bless \my $scalar, 'Contextual::Return::Value'; $attrs = $attrs_of{refaddr $crv} = { args => $args, sub => $subname }; } else { $attrs = $attrs_of{refaddr $crv}; } # Make sure this block is a possibility too... die _in_context "Can't install two $context handlers" if exists $attrs->{$context}; $attrs->{$context} = $block; # Identify context... my $wantarray = wantarray; # Prepare for exception handling... my $recover = $attrs->{RECOVER}; local $Contextual::Return::uplevel = 2; # Handle list context directly, if possible... if (wantarray) { local $Contextual::Return::__RESULT__; # List or ancestral handlers... for my $context (qw(LIST VALUE NONVOID DEFAULT)) { my $handler = $attrs->{$context} or next; my @rv = eval { $handler->(@{$attrs->{args}}) }; if ($recover) { () = $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } return @rv if !$Contextual::Return::__RESULT__; return @{$Contextual::Return::__RESULT__->[0]}; } # Convert to list from arrayref handler... if (my $handler = $attrs->{ARRAYREF}) { local $Contextual::Return::uplevel = 2; # Array ref may be returned directly, or via RESULT{}... my $array_ref = eval { $handler->(@{$attrs->{args}}) }; if ($recover) { scalar $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } $array_ref = $Contextual::Return::__RESULT__->[0] if $Contextual::Return::__RESULT__; return @{$array_ref} if (ref $array_ref||q{}) eq 'ARRAY'; } # Return scalar object as one-elem list, if possible... for my $context (qw(STR NUM SCALAR LAZY)) { return $crv if exists $attrs->{$context}; } die _in_context "Can't call $attrs->{sub} in list context"; } # Handle void context directly... if (!defined $wantarray) { for my $context (qw(VOID DEFAULT)) { next if !$attrs->{$context}; eval { $attrs->{$context}->(@{$attrs->{args}}) }; if ($recover) { $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } last; } return; } # Otherwise, defer evaluation by returning an object... return $crv; } } # Alias LAZY to SCALAR... *LAZY = *SCALAR; package Contextual::Return::Value; BEGIN { *_in_context = *Contextual::Return::_in_context; } use Scalar::Util qw( refaddr ); use overload ( q{""} => sub { my ($self) = @_; my $attrs = $attrs_of{refaddr $self}; for my $context (qw(STR SCALAR LAZY VALUE NONVOID DEFAULT NUM)) { my $handler = $attrs->{$context} or next; local $Contextual::Return::__RESULT__; local $Contextual::Return::uplevel = 2; my $rv = eval { $handler->(@{$attrs->{args}}) }; if (my $recover = $attrs->{RECOVER}) { scalar $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } if ($Contextual::Return::__RESULT__) { $rv = $Contextual::Return::__RESULT__->[0]; } if ( $attrs->{FIXED} ) { $_[0] = $rv; } elsif ( !$attrs->{ACTIVE} ) { $attrs->{$context} = sub { $rv }; } return $rv; } die _in_context "Can't call $attrs->{sub} in string context"; }, q{0+} => sub { my ($self) = @_; my $attrs = $attrs_of{refaddr $self}; for my $context (qw(NUM SCALAR LAZY VALUE NONVOID DEFAULT STR)) { my $handler = $attrs->{$context} or next; local $Contextual::Return::__RESULT__; local $Contextual::Return::uplevel = 2; my $rv = eval { $handler->(@{$attrs->{args}}) }; if (my $recover = $attrs->{RECOVER}) { scalar $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } if ($Contextual::Return::__RESULT__) { $rv = $Contextual::Return::__RESULT__->[0]; } if ( $attrs->{FIXED} ) { $_[0] = $rv; } elsif ( !$attrs->{ACTIVE} ) { $attrs->{$context} = sub { $rv }; } return $rv; } die _in_context "Can't call $attrs->{sub} in numeric context"; }, q{bool} => sub { my ($self) = @_; my $attrs = $attrs_of{refaddr $self}; for my $context (qw(BOOL SCALAR LAZY VALUE NONVOID DEFAULT)) { my $handler = $attrs->{$context} or next; local $Contextual::Return::__RESULT__; local $Contextual::Return::uplevel = 2; my $rv = eval { $handler->(@{$attrs->{args}}) }; if (my $recover = $attrs->{RECOVER}) { scalar $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } if ($Contextual::Return::__RESULT__) { $rv = $Contextual::Return::__RESULT__->[0]; } if ( $attrs->{FIXED} ) { $_[0] = $rv; } elsif ( !$attrs->{ACTIVE} ) { $attrs->{$context} = sub { $rv }; } return $rv; } die _in_context "Can't call $attrs->{sub} in boolean context"; }, '${}' => sub { my ($self) = @_; my $attrs = $attrs_of{refaddr $self}; for my $context (qw(SCALARREF REF NONVOID DEFAULT)) { my $handler = $attrs->{$context} or next; local $Contextual::Return::__RESULT__; local $Contextual::Return::uplevel = 2; my $rv = eval { $handler->(@{$attrs->{args}}) }; if (my $recover = $attrs->{RECOVER}) { scalar $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } if ($Contextual::Return::__RESULT__) { $rv = $Contextual::Return::__RESULT__->[0]; } # Catch bad behaviour... die _in_context "$context block did not return ", "a suitable reference to the scalar dereference" if ref($rv) ne 'SCALAR' && ref($rv) ne 'OBJ'; if ( $attrs->{FIXED} ) { $_[0] = $rv; } elsif ( !$attrs->{ACTIVE} ) { $attrs->{$context} = sub { $rv }; } return $rv; } if ( $attrs->{FIXED} ) { $_[0] = \$self; } return \$self; }, '@{}' => sub { my ($self) = @_; my $attrs = $attrs_of{refaddr $self}; local $Contextual::Return::__RESULT__; for my $context (qw(ARRAYREF REF)) { my $handler = $attrs->{$context} or next; local $Contextual::Return::uplevel = 2; my $rv = eval { $handler->(@{$attrs->{args}}) }; if (my $recover = $attrs->{RECOVER}) { scalar $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } if ($Contextual::Return::__RESULT__) { $rv = $Contextual::Return::__RESULT__->[0]; } # Catch bad behaviour... die _in_context "$context block did not return ", "a suitable reference to the array dereference" if ref($rv) ne 'ARRAY' && ref($rv) ne 'OBJ'; if ( $attrs->{FIXED} ) { $_[0] = $rv; } elsif ( !$attrs->{ACTIVE} ) { $attrs->{$context} = sub { $rv }; } return $rv; } for my $context (qw(LIST VALUE NONVOID DEFAULT)) { my $handler = $attrs->{$context} or next; local $Contextual::Return::uplevel = 2; my @rv = eval { $handler->(@{$attrs->{args}}) }; if (my $recover = $attrs->{RECOVER}) { () = $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } if ($Contextual::Return::__RESULT__) { @rv = @{$Contextual::Return::__RESULT__->[0]}; } if ( $attrs->{FIXED} ) { $_[0] = \@rv; } elsif ( !$attrs->{ACTIVE} ) { $attrs->{$context} = sub { @rv }; } return \@rv; } return [ $self ]; }, '%{}' => sub { my ($self) = @_; my $attrs = $attrs_of{refaddr $self}; for my $context (qw(HASHREF REF NONVOID DEFAULT)) { my $handler = $attrs->{$context} or next; local $Contextual::Return::__RESULT__; local $Contextual::Return::uplevel = 2; my $rv = eval { $handler->(@{$attrs->{args}}) }; if (my $recover = $attrs->{RECOVER}) { scalar $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } if ($Contextual::Return::__RESULT__) { $rv = $Contextual::Return::__RESULT__->[0]; } # Catch bad behaviour... die _in_context "$context block did not return ", "a suitable reference to the hash dereference" if ref($rv) ne 'HASH' && ref($rv) ne 'OBJ'; if ( $attrs->{FIXED} ) { $_[0] = $rv; } elsif ( !$attrs->{ACTIVE} ) { $attrs->{$context} = sub { $rv }; } return $rv; } die _in_context "$attrs->{sub} can't return a hash reference"; }, '&{}' => sub { my ($self) = @_; my $attrs = $attrs_of{refaddr $self}; for my $context (qw(CODEREF REF NONVOID DEFAULT)) { my $handler = $attrs->{$context} or next; local $Contextual::Return::__RESULT__; local $Contextual::Return::uplevel = 2; my $rv = eval { $handler->(@{$attrs->{args}}) }; if (my $recover = $attrs->{RECOVER}) { scalar $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } if ($Contextual::Return::__RESULT__) { $rv = $Contextual::Return::__RESULT__->[0]; } # Catch bad behaviour... die _in_context "$context block did not return ", "a suitable reference to the subroutine dereference" if ref($rv) ne 'CODE' && ref($rv) ne 'OBJ'; if ( $attrs->{FIXED} ) { $_[0] = $rv; } elsif ( !$attrs->{ACTIVE} ) { $attrs->{$context} = sub { $rv }; } return $rv; } die _in_context "$attrs->{sub} can't return a subroutine reference"; }, '*{}' => sub { my ($self) = @_; my $attrs = $attrs_of{refaddr $self}; for my $context (qw(GLOBREF REF NONVOID DEFAULT)) { my $handler = $attrs->{$context} or next; local $Contextual::Return::__RESULT__; local $Contextual::Return::uplevel = 2; my $rv = eval { $handler->(@{$attrs->{args}}) }; if (my $recover = $attrs->{RECOVER}) { scalar $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } if ($Contextual::Return::__RESULT__) { $rv = $Contextual::Return::__RESULT__->[0]; } # Catch bad behaviour... die _in_context "$context block did not return ", "a suitable reference to the typeglob dereference" if ref($rv) ne 'GLOB' && ref($rv) ne 'OBJ'; if ( $attrs->{FIXED} ) { $_[0] = $rv; } elsif ( !$attrs->{ACTIVE} ) { $attrs->{$context} = sub { $rv }; } return $rv; } die _in_context "$attrs->{sub} can't return a typeglob reference"; }, fallback => 1, ); sub DESTROY { delete $attrs_of{refaddr shift}; return; } my $NO_SUCH_METHOD = qr/\ACan't (?:locate|call)(?: class| object)? method/ms; # Forward metainformation requests to actual class... sub can { my ($invocant) = @_; # Only forward requests on actual C::R::V objects... if (ref $invocant) { our $AUTOLOAD = 'can'; goto &AUTOLOAD; } # Refer requests on classes to actual class hierarchy... return $invocant->SUPER::can(@_[1..$#_]); } sub isa { # Only forward requests on actual C::R::V objects... my ($invocant) = @_; if (ref $invocant) { our $AUTOLOAD = 'isa'; goto &AUTOLOAD; } # Refer requests on classes to actual class hierarchy... return $invocant->SUPER::isa(@_[1..$#_]); } sub AUTOLOAD { my ($self) = @_; our $AUTOLOAD; $AUTOLOAD =~ s/.*:://xms; my $attrs = $attrs_of{refaddr $self} || {}; for my $context (qw(OBJREF STR SCALAR LAZY VALUE NONVOID DEFAULT)) { my $handler = $attrs->{$context} or next; local $Contextual::Return::__RESULT__; local $Contextual::Return::uplevel = 2; my $object = eval { $handler->(@{$attrs->{args}}) }; if (my $recover = $attrs->{RECOVER}) { scalar $recover->(@{$attrs->{args}}); } elsif ($@) { die $@; } if ($Contextual::Return::__RESULT__) { $object = $Contextual::Return::__RESULT__->[0]; } if ( $attrs->{FIXED} ) { $_[0] = $object; } elsif ( !$attrs->{ACTIVE} ) { $attrs->{$context} = sub { $object }; } shift; if (wantarray) { my @result = eval { $object->$AUTOLOAD(@_) }; my $exception = $@; return @result if !$exception; die _in_context $exception if $exception !~ $NO_SUCH_METHOD; } else { my $result = eval { $object->$AUTOLOAD(@_) }; my $exception = $@; return $result if !$exception; die _in_context $exception if $exception !~ $NO_SUCH_METHOD; } die _in_context "Can't call method '$AUTOLOAD' on $context value returned by $attrs->{sub}"; } die _in_context "Can't call method '$AUTOLOAD' on value returned by $attrs->{sub}"; } package Contextual::Return::Lvalue; sub TIESCALAR { my ($package, @handler) = @_; return bless {@handler}, $package; } # Handle calls that are lvalues... sub STORE { local *CALLER::_ = \$_; local *_ = \$_[1]; local $Contextual::Return::uplevel = 1; local $Contextual::Return::__RESULT__; my $rv = $_[0]{LVALUE}( @{$_[0]{args}} ); return $rv if !$Contextual::Return::__RESULT__; return $Contextual::Return::__RESULT__->[0]; } # Handle calls that are rvalues... sub FETCH { local $Contextual::Return::uplevel = 1; local $Contextual::Return::__RESULT__; my $rv = $_[0]{RVALUE} ? $_[0]{RVALUE}( @{$_[0]{args}} ) : undef; return $rv if !$Contextual::Return::__RESULT__; return $Contextual::Return::__RESULT__->[0]; } sub DESTROY {}; 1; # Magic true value required at end of module __END__ =head1 NAME Contextual::Return - Create context-senstive return values =head1 VERSION This document describes Contextual::Return version 0.2.1 =head1 SYNOPSIS use Contextual::Return; use Carp; sub foo { return SCALAR { 'thirty-twelve' } BOOL { 1 } NUM { 7*6 } STR { 'forty-two' } LIST { 1,2,3 } HASHREF { {name => 'foo', value => 99} } ARRAYREF { [3,2,1] } GLOBREF { \*STDOUT } CODEREF { croak "Don't use this result as code!"; } ; } # and later... if (my $foo = foo()) { for my $count (1..$foo) { print "$count: $foo is:\n" . " array: @{$foo}\n" . " hash: $foo->{name} => $foo->{value}\n" ; } print {$foo} $foo->(); } =head1 DESCRIPTION Usually, when you need to create a subroutine that returns different values in different contexts (list, scalar, or void), you write something like: sub get_server_status { my ($server_ID) = @_; # Acquire server data somehow... my %server_data = _ascertain_server_status($server_ID); # Return different components of that data, # depending on call context... if (wantarray()) { return @server_data{ qw(name uptime load users) }; } if (defined wantarray()) { return $server_data{load}; } if (!defined wantarray()) { carp 'Useless use of get_server_status() in void context'; return; } else { croak q{Bad context! No biscuit!}; } } That works okay, but the code could certainly be more readable. In its simplest usage, this module makes that code more readable by providing three subroutines--C, C, C--that are true only when the current subroutine is called in the corresponding context: use Contextual::Return; sub get_server_status { my ($server_ID) = @_; # Acquire server data somehow... my %server_data = _ascertain_server_status($server_ID); # Return different components of that data # depending on call context... if (LIST) { return @server_data{ qw(name uptime load users) } } if (SCALAR) { return $server_data{load} } if (VOID) { print "$server_data{load}\n" } else { croak q{Bad context! No biscuit!} } } =head2 Contextual returns Those three subroutines can also be used in another way: as labels on a series of I (collectively known as a I). When a context sequence is returned, it automatically selects the appropriate contextual return block for the calling context. So the previous example could be written even more cleanly as: use Contextual::Return; sub get_server_status { my ($server_ID) = @_; # Acquire server data somehow... my %server_data = _ascertain_server_status($server_ID); # Return different components of that data # depending on call context... return ( LIST { return @server_data{ qw(name uptime load users) } } SCALAR { return $server_data{load} } VOID { print "$server_data{load}\n" } DEFAULT { croak q{Bad context! No biscuit!} } ); } The context sequence automatically selects the appropriate block for each call context. =head2 Lazy contextual return values C and C blocks are always executed during the C statement. However, scalar return blocks (C, C, C, C, etc.) blocks are not. Instead, returning any of scalar block types causes the subroutine to return an object that lazily evaluates that block only when the return value is used. This means that returning a C block is a convenient way to implement a subroutine with a lazy return value. For example: sub digest { return SCALAR { my ($text) = @_; md5($text); } } my $digest = digest($text); print $digest; # md5() called only when $digest used as string To better document this usage, the C block has a synonym: C. sub digest { return LAZY { my ($text) = @_; md5($text); } } =head2 Active contextual return values Once a return value has been lazily evaluated in a given context, the resulting value is cached, and thereafter reused in that same context. However, you can specify that, rather than being cached, the value should be re-evaluated I time the value is used: sub make_counter { my $counter = 0; return ACTIVE SCALAR { ++$counter } ARRAYREF { [1..$counter] } } my $idx = make_counter(); print "$idx\n"; # 1 print "$idx\n"; # 2 print "[@$idx]\n"; # [1 2] print "$idx\n"; # 3 print "[@$idx]\n"; # [1 2 3] =head2 Semi-lazy contextual return values Sometimes, single or repeated lazy evaluation of a scalar return value in different contexts isn't what you really want. Sometimes what you really want is for the return value to be lazily evaluated once only (the first time it's used in any context), and then for that first value to be reused whenever the return value is subsequently reevaluated in any other context. To get that behaviour, you can use the C modifier, which causes the return value to morph itself into the actual value the first time it is used. For example: sub lazy { return SCALAR { 42 } ARRAYREF { [ 1, 2, 3 ] } ; } my $lazy = lazy(); print $lazy + 1; # 43 print "@{$lazy}"; # 1 2 3 sub semilazy { return FIXED SCALAR { 42 } ARRAYREF { [ 1, 2, 3 ] } ; } my $semi = semilazy(); print $semi + 1; # 43 print "@{$semi}"; # die q{Can't use string ("42") as an ARRAY ref} =head2 Finer distinctions of scalar context Because the scalar values returned from a context sequence are lazily evaluated, it becomes possible to be more specific about I of scalar value should be returned: a boolean, a number, or a string. To support those distinctions, Contextual::Return provides three extra context blocks: C, C, and C: sub get_server_status { my ($server_ID) = @_; # Acquire server data somehow... my %server_data = _ascertain_server_status($server_ID); # Return different components of that data # depending on call context... return ( LIST { @server_data{ qw(name uptime load users) } } BOOL { $server_data{uptime} > 0 } NUM { $server_data{load} } STR { "$server_data{name}: $server_data{uptime}" } VOID { print "$server_data{load}\n" } DEFAULT { croak q{Bad context! No biscuit!} } ); } With these in place, the object returned from a scalar-context call to C now behaves differently, depending on how it's used. For example: if ( my $status = get_server_status() ) { # True if uptime > 0 $load_distribution[$status]++; # Evaluates to load value print "$status\n"; # Prints name: uptime } =head2 Referential contexts The other major kind of scalar return value is a reference. Contextual::Return provides contextual return blocks that allow you to specify what to (lazily) return when the return value of a subroutine is used as a reference to a scalar (C), to an array (C), to a hash (C), to a subroutine (C), or to a typeglob (C). For example, the server status subroutine shown earlier could be extended to allow it to return a hash reference, thereby supporting "named return values": sub get_server_status { my ($server_ID) = @_; # Acquire server data somehow... my %server_data = _ascertain_server_status($server_ID); # Return different components of that data # depending on call context... return ( LIST { @server_data{ qw(name uptime load users) } } BOOL { $server_data{uptime} > 0 } NUM { $server_data{load} } STR { "$server_data{name}: $server_data{uptime}" } VOID { print "$server_data{load}\n" } HASHREF { return \%server_data } DEFAULT { croak q{Bad context! No biscuit!} } ); } # and later... my $users = get_server_status->{users}; # or, lazily... my $server = get_server_status(); print "$server->{name} load = $server->{load}\n"; =head2 Interpolative referential contexts The C and C context blocks are especially useful when you need to interpolate a subroutine into strings. For example, if you have a subroutine like: sub get_todo_tasks { return ( SCALAR { scalar @todo_list } # How many? LIST { @todo_list } # What are they? ); } # and later... print "There are ", scalar(get_todo_tasks()), " tasks:\n", get_todo_tasks(); then you could make it much easier to interpolate calls to that subroutine by adding: sub get_todo_tasks { return ( SCALAR { scalar @todo_list } # How many? LIST { @todo_list } # What are they? SCALARREF { \scalar @todo_list } # Ref to how many ARRAYREF { \@todo_list } # Ref to them ); } # and then... print "There are ${get_todo_tasks()} tasks:\n@{get_todo_tasks()}"; In fact, this behaviour is so useful that it's the default. If you don't provide an explicit C block, Contextual::Return automatically provides an implicit one that simply returns a reference to whatever would have been returned in scalar context. Likewise, if no C block is specified, the module supplies one that returns the list-context return value wrapped up in an array reference. So you could just write: sub get_todo_tasks { return ( SCALAR { scalar @todo_list } # How many? LIST { @todo_list } # What are they? ); } # and still do this... print "There are ${get_todo_tasks()} tasks:\n@{get_todo_tasks()}"; =head2 Fallback contexts As the previous sections imply, the C, C, C, and various C<*REF {...}> blocks, are special cases of the general C context block. If a subroutine is called in one of these specialized contexts but does not use the corresponding context block, then the more general C block is used instead (if it has been specified). So, for example: sub read_value_from { my ($fh) = @_; my $value = <$fh>; chomp $value; return ( BOOL { defined $value } SCALAR { $value } ); } ensures that the C subroutine returns true in boolean contexts if the read was successful. But, because no specific C or C return behaviours were specified, the subroutine falls back on using its generic C block in all other scalar contexts. Another way to think about this behaviour is that the various kinds of scalar context blocks form a hierarchy: SCALAR ^ | |--< BOOL | |--< NUM | `--< STR Contextual::Return uses this hierarchical relationship to choose the most specific context block available to handle any particular return context, working its way up the tree from the specific type it needs, to the more general type, if that's all that is available. There are two slight complications to this picture. The first is that Perl treats strings and numbers as interconvertable so the diagram (and the Contextual::Return module) also has to allow these interconversions as a fallback strategy: SCALAR ^ | |--< BOOL | |--< NUM | : ^ | v : `--< STR The dotted lines are meant to indicate that this intraconversion is secondary to the main hierarchical fallback. That is, in a numeric context, a C block will only be used if there is no C block I no C block. In other words, the generic context type is always used in preference to string<->number conversion. The second slight complication is that the above diagram only shows a small part of the complete hierarchy of contexts supported by Contextual::Return. The full fallback hierarchy (including dotted interconversions) is: DEFAULT ^ | |--< VOID | `--< NONVOID ^ | |--< VALUE <.............. | ^ : | | : | |--< SCALAR <.....:.. | | ^ : | | | : | | |--< BOOL : | | | : | | |--< NUM <..:.. | | | : ^ : | | | v : : | | `--< STR <....:.. | | : | | .: | `--< LIST ............. : | : ^ : | : : : `--- REF : : : ^ : : : | v : : |--< ARRAYREF : | . |--< SCALARREF ......... | |--< HASHREF | |--< CODEREF | |--< GLOBREF | `--< OBJREF As before, each dashed arrow represents a fallback relationship. That is, if the required context specifier isn't available, the arrows are followed until a more generic one is found. The dotted arrows again represent the interconversion of return values, which is attempted only after the normal hierarchical fallback fails. For example, if a subroutine is called in a context that expects a scalar reference, but no C block is provided, then Contextual::Return tries the following blocks in order: REF {...} NONVOID {...} DEFAULT {...} STR {...} (automatically taking a reference to the result) NUM {...} (automatically taking a reference to the result) SCALAR {...} (automatically taking a reference to the result) VALUE {...} (automatically taking a reference to the result) Likewise, in a list context, if there is no C context block, the module tries: VALUE {...} NONVOID {...} DEFAULT {...} ARRAYREF {...} (automatically dereferencing the result) STR {...} (treating it as a list of one element) NUM {...} (treating it as a list of one element) SCALAR {...} (treating it as a list of one element) VALUE {...} (treating it as a list of one element) The more generic context blocks are especially useful for intercepting unexpected and undesirable call contexts. For example, to turn I the automatic scalar-ref and array-ref interpolative behaviour described in L, you could intercept I referential contexts using a generic C context block: sub get_todo_tasks { return ( SCALAR { scalar @todo_list } # How many? LIST { @todo_list } # What are they? REF { croak q{get_todo_task() can't be used as a reference} } ); } print 'There are ', get_todo_tasks(), '...'; # Still okay print "There are ${get_todo_tasks()}..."; # Throws an exception =head2 Failure contexts Two of the most common ways to specify that a subroutine has failed are to return a false value, or to throw an exception. The Contextual::Return module provides a mechanism that allows the subroutine writer to support I of these mechanisms at the same time, by using the C specifier. A return statement of the form: return FAIL; causes the surrounding subroutine to return C (i.e. false) in boolean contexts, and to throw an exception in any other context. For example: use Contextual::Return; sub get_next_val { my $next_val = <>; return FAIL if !defined $next_val; chomp $next_val; return $next_val; } If the C statement is executed, it will either return false in a boolean context: if (my $val = get_next_val()) { # returns undef if no next val print "[$val]\n"; } or else throw an exception if the return value is used in any other context: print get_next_val(); # throws exception if no next val my $next_val = get_next_val(); print "[$next_val]\n"; # throws exception if no next val The exception that is thrown is of the form: Call to main::get_next_val() failed at demo.pl line 42 but you can change that message by providing a block to the C, like so: return FAIL { "No more data" } if !defined $next_val; in which case, the final value of the block becomes the exception message: No more data at demo.pl line 42 =head2 Configurable failure contexts The default C behaviour--false in boolean context, fatal in all others--works well in most situations, but violates the Platinum Rule ("Do unto others as I would have done unto them"). So it may be user-friendlier if the user of a module is allowed decide how the module's subroutines should behave on failure. For example, one user might prefer that failing subs always return undef; another might prefer that they always throw an exception; a third might prefer that they always log the problem and return a special Failure object; whilst a fourth user might want to get back C<0> in scalar contexts, an empty list in list contexts, and an exception everywhere else. You could create a module that allows the user to specify all these alternatives, like so: package MyModule; use Contextual::Return; use Log::StdLog; sub import { my ($package, @args) = @_; Contextual::Return::FAIL_WITH { ':false' => sub { return undef }, ':fatal' => sub { croak @_ }, ':filed' => sub { print STDLOG 'Sub ', (caller 1)[3], ' failed'; return Failure->new(); }, ':fussy' => sub { SCALAR { undef } LIST { () } DEFAULT { croak @_ } }, }, @args; } This configures Contextual::Return so that, instead of the usual false-or-fatal semantics, every C within MyModule's namespace is implemented by one of the four subroutines specified in the hash that was passed to C. Which of those four subs implements the C is determined by the arguments passed after the hash (i.e. by the contents of C<@args>). C walks through that list of arguments and compares them against the keys of the hash. If a key matches an argument, the corresponding value is used as the implementation of C. Note that, if subsequent arguments also match a key, their subroutine overrides the previously installed implementation, so only the final override has any effect. Contextual::Return generates warnings when multiple overrides are specified. All of which mean that, if a user loaded the MyModule module like this: use MyModule qw( :fatal other args here ); then every C within MyModule would be reconfigured to throw an exception in all circumstances, since the presence of the C<':fatal'> in the argument list will cause C to select the hash entry whose key is C<':fatal'>. On the other hand, if they loaded the module: use MyModule qw( :fussy other args here ); then each C within MyModule would return undef or empty list or throw an exception, depending on context, since that's what the subroutine whose key is C<':fussy'> does. Many people prefer module interfaces with a C => I> format, and C supports this too. For example, if you wanted your module to take a C<-fail> flag, whose associated value could be any of C<"undefined">, C<"exception">, C<"logged">, or C<"context">, then you could implement that simply by specifying the flag as the first argument (i.e. I the hash) like so: sub import { my $package = shift; Contextual::Return::FAIL_WITH -fail => { 'undefined' => sub { return undef }, 'exception' => sub { croak @_ }, 'logged' => sub { print STDLOG 'Sub ', (caller 1)[3], ' failed'; return Failure->new(); }, 'context' => sub { SCALAR { undef } LIST { () } DEFAULT { croak @_ } }, }, @_; and then load the module: use MyModule qw( other args here ), -fail=>'undefined'; or: use MyModule qw( other args here ), -fail=>'exception'; In this case, C scans the argument list for a pair of values: its flag string, followed by some other selector value. Then it looks up the selector value in the hash, and installs the corresponding subroutine as its local C handler. If this "flagged" interface is used, the user of the module can also specify their own handler directly, by passing a subroutine reference as the selector value instead of a string: use MyModule qw( other args here ), -fail=>sub{ die 'horribly'}; If this last example were used, any call to C within MyModule would invoke the specified anonymous subroutine (and hence throw a 'horribly' exception). Note that, any overriding of a C handler is specific to the namespace and file from which the subroutine that calls C is itself called. Since C is designed to be called from within a module's C subroutine, that generally means that the Cs within a given module X are only overridden for the current namespace within the particular file from module X is loaded. This means that two separate pieces of code (in separate files or separate namespaces) can each independently overide a module's C behaviour, without interfering with each other. =head2 Lvalue contexts Recent versions of Perl offer (limited) support for lvalue subroutines: subroutines that return a modifiable variable, rather than a simple constant value. Contextual::Return can make it easier to create such subroutines, within the limitations imposed by Perl itself. The limitations that Perl places on lvalue subs are: =over =item 1. The subroutine must be declared with an C<:lvalue> attribute: sub foo :lvalue {...} =item 2. The subroutine must not return via an explicit C. Instead, the last statement must evaluate to a variable, or must be a call to another lvalue subroutine call. my ($foo, $baz); sub foo :lvalue { $foo; # last statement evals to a var } sub bar :lvalue { foo(); # last statement is lvalue sub call } sub baz :lvalue { my ($arg) = @_; $arg > 0 # last statement evals... ? $baz # ...to a var : bar(); # ...or to an lvalue sub call } =back Thereafter, any call to the lvalue subroutine produces a result that can be assigned to: baz(0) = 42; # same as: $baz = 42 baz(1) = 84; # same as: bar() = 84 # which is the same as: foo() = 84 # which is the same as: $foo = 84 Ultimately, every lvalue subroutine must return a scalar variable, which is then used as the lvalue of the assignment (or whatever other lvalue operation is applied to the subroutine call). Unfortunately, because the subroutine has to return this variable I the assignment can take place, there is no way that a normal lvalue subroutine can get access to the value that will eventually be assigned to its return value. This is occasionally annoying, so the Contextual::Return module offers a solution: in addition to all the context blocks described above, it provides three special contextual return blocks specifically for use in lvalue subroutines: C, C, and C. Using these blocks you can specify what happens when an lvalue subroutine is used in lvalue and non-lvalue (rvalue) context. For example: my $verbosity_level = 1; # Verbosity values must be between 0 and 5... sub verbosity :lvalue { LVALUE { $verbosity_level = max(0, min($_, 5)) } RVALUE { $verbosity_level } } The C block is executed whenever C is called as an lvalue: verbosity() = 7; The block has access to the value being assigned, which is passed to it as C<$_>. So, in the above example, the assigned value of 7 would be aliased to C<$_> within the C block, would be reduced to 5 by the "min-of-max" expression, and then assigned to C<$verbosity_level>. (If you need to access the caller's C<$_>, it's also still available: as C<$CALLER::_>.) When the subroutine isn't used as an lvalue: print verbosity(); the C block is executed instead and its final value returned. Within an C block you can use any of the other features of Contextual::Return. For example: sub verbosity :lvalue { LVALUE { $verbosity_level = int max(0, min($_, 5)) } RVALUE { NUM { $verbosity_level } STR { $description[$verbosity_level] } BOOL { $verbosity_level > 2 } } } but the context sequence must be nested inside an C block. You can also specify what an lvalue subroutine should do when it is used neither as an lvalue nor as an rvalue (i.e. in void context), by using an C block: sub verbosity :lvalue { my ($level) = @_; NVALUE { $verbosity_level = int max(0, min($level, 5)) } LVALUE { $verbosity_level = int max(0, min($_, 5)) } RVALUE { NUM { $verbosity_level } STR { $description[$verbosity_level] } BOOL { $verbosity_level > 2 } } } In this example, a call to C in void context sets the verbosity level to whatever argument is passed to the subroutine: verbosity(1); Note that you I get the same effect by nesting a C block within an C block: LVALUE { $verbosity_level = int max(0, min($_, 5)) } RVALUE { NUM { $verbosity_level } STR { $description[$verbosity_level] } BOOL { $verbosity_level > 2 } VOID { $verbosity_level = $level } # Wrong! } That's because, in a void context the return value is never evaluated, so it is never treated as an rvalue, which means the C block never executes. =head2 Result blocks Occasionally, it's convenient to calculate a return value I the end of a contextual return block. For example, you may need to clean up external resources involved in the calculation after it's complete. Typically, this requirement produces a slightly awkward code sequence like this: return VALUE { $db->start_work(); my $result = $db->retrieve_query($query); $db->commit(); $result; } Such code sequences become considerably more awkward when you want the return value to be context sensitive, in which case you have to write either: return LIST { $db->start_work(); my @result = $db->retrieve_query($query); $db->commit(); @result; } SCALAR { $db->start_work(); my $result = $db->retrieve_query($query); $db->commit(); $result; } or, worse: return VALUE { $db->start_work(); my $result = LIST ? [$db->retrieve_query($query)] : $db->retrieve_query($query); $db->commit(); LIST ? @{$result} : $result; } To avoid these infelicities, Contextual::Return provides a second way of setting the result of a context block; a way that doesn't require that the result be the last statement in the block: return LIST { $db->start_work(); RESULT { $db->retrieve_query($query) }; $db->commit(); } SCALAR { $db->start_work(); RESULT { $db->retrieve_query($query) }; $db->commit(); } The presence of a C block inside a contextual return block causes that block to return the value of the final statement of the C block as the handler's return value, rather than returning the value of the handler's own final statement. In other words, the presence of a C block overrides the normal return value of a context handler. Better still, the C block always evaluates its final statement in the same context as the surrounding C, so you can just write: return VALUE { $db->start_work(); RESULT { $db->retrieve_query($query) }; $db->commit(); } and the C method will be called in the appropriate context in all cases. A C block can appear anywhere inside any contextual return block, but may not be used outside a context block. That is, this is an error: if ($db->closed) { RESULT { undef }; # Error: not in a context block } return VALUE { $db->start_work(); RESULT { $db->retrieve_query($query) }; $db->commit(); } =head2 Post-handler clean-up If a subroutine uses an external resource, it's often necessary to close or clean-up that resource after the subroutine ends...regardless of whether the subroutine exits normally or via an exception. Typically, this is done by encapsulating the resource in a lexically scoped object whose constructor does the clean-up. However, if the clean-up doesn't involve deallocation of an object (as in the C<< $db->commit() >> example in the previous section), it can be annoying to have to create a class and allocate a container object, merely to mediate the clean-up. To make it easier to manage such resources, Contextual::Return supplies a special labelled block: the C block. If a C block is specified as part of a contextual return sequence, that block is executed after any context handler, even if the context handler exits via an exception. So, for example, you could implement a simple commit-or-revert policy like so: return LIST { $db->retrieve_all($query) } SCALAR { $db->retrieve_next($query) } RECOVER { if ($@) { $db->revert(); } else { $db->commit(); } } The presence of a C block also intercepts all exceptions thrown in any other context block in the same contextual return sequence. Any such exception is passed into the C block in the usual manner: via the C<$@> variable. The exception may be rethrown out of the C block by calling C: return LIST { $db->retrieve_all($query) } DEFAULT { croak "Invalid call (not in list context)" } RECOVER { die $@ if $@; # Propagate any exception $db->commit(); # Otherwise commit the changes } A C block can also access or replace the returned value, by invoking a C block. For example: return LIST { attempt_to_generate_list_for(@_) } SCALAR { attempt_to_generate_count_for(@_) } RECOVER { if ($@) { # On any exception... RESULT { undef } # ...return undef } } =head1 INTERFACE =head2 Context tests =over =item C<< LIST() >> Returns true if the current subroutine was called in list context. A cleaner way of writing: C<< wantarray() >> =item C<< SCALAR() >> Returns true if the current subroutine was called in scalar context. A cleaner way of writing: C<< defined wantarray() && ! wantarray() >> =item C<< VOID() >> Returns true if the current subroutine was called in void context. A cleaner way of writing: C<< !defined wantarray() >> =item C<< NONVOID() >> Returns true if the current subroutine was called in list or scalar context. A cleaner way of writing: C<< defined wantarray() >> =back =head2 Standard contexts =over =item C<< LIST {...} >> The block specifies what the context sequence should evaluate to when called in list context. =item C<< SCALAR {...} >> The block specifies what the context sequence should evaluate to in scalar contexts, unless some more-specific specifier scalar context specifier (see below) also occurs in the same context sequence. =item C<< VOID {...} >> The block specifies what the context sequence should do when called in void context. =back =head2 Scalar value contexts =over =item C<< BOOL {...} >> The block specifies what the context sequence should evaluate to when treated as a boolean value. =item C<< NUM {...} >> The block specifies what the context sequence should evaluate to when treated as a numeric value. =item C<< STR {...} >> The block specifies what the context sequence should evaluate to when treated as a string value. =item C<< LAZY {...} >> Another name for C. Usefully self-documenting when the primary purpose of the contextual return is to defer evaluation of the return value until it's actually required. =back =head2 Scalar reference contexts =over =item C<< SCALARREF {...} >> The block specifies what the context sequence should evaluate to when treated as a reference to a scalar. =item C<< ARRAYREF {...} >> The block specifies what the context sequence should evaluate to when treated as a reference to an array. =item C<< HASHREF {...} >> The block specifies what the context sequence should evaluate to when treated as a reference to a hash. Note that a common error here is to write: HASHREF { a=>1, b=>2, c=>3 } The curly braces there are a block, not a hash constructor, so the block doesn't return a hash reference and the interpreter throws an exception. What's needed is: HASHREF { {a=>1, b=>2, c=>3} } in which the inner braces I a hash constructor. =item C<< CODEREF {...} >> The block specifies what the context sequence should evaluate to when treated as a reference to a subroutine. =item C<< GLOBREF {...} >> The block specifies what the context sequence should evaluate to when treated as a reference to a typeglob. =item C<< OBJREF {...} >> The block specifies what the context sequence should evaluate to when treated as a reference to an object. =back =head2 Generic contexts =over =item C<< VALUE {...} >> The block specifies what the context sequence should evaluate to when treated as a non-referential value (as a boolean, numeric, string, scalar, or list). Only used if there is no more-specific value context specifier in the context sequence. =item C<< REF {...} >> The block specifies what the context sequence should evaluate to when treated as a reference of any kind. Only used if there is no more-specific referential context specifier in the context sequence. =item C<< NONVOID {...} >> The block specifies what the context sequence should evaluate to when used in a non-void context of any kind. Only used if there is no more-specific context specifier in the context sequence. =item C<< DEFAULT {...} >> The block specifies what the context sequence should evaluate to when used in a void or non-void context of any kind. Only used if there is no more-specific context specifier in the context sequence. =back =head2 Failure context =over =item C<< FAIL >> This block is executed unconditionally and is used to indicate failure. In a Boolean context it return false. In all other contexts it throws an exception consisting of the final evaluated value of the block. That is, using C: return FAIL { "Could not defenestrate the widget" } is exactly equivalent to writing: return BOOL { 0 } DEFAULT { croak "Could not defenestrate the widget" } except that the reporting of errors is a little smarter under C. If C is called without specifying a block: return FAIL; it is equivalent to: return FAIL { croak "Call to failed" } (where C<< >> is replaced with the name of the surrounding subroutine). Note that, because C implicitly covers every possible return context, it cannot be chained with other context specifiers. =item C<< Contextual::Return::FAIL_WITH >> This subroutine is not exported, but may be called directly to reconfigure C behaviour in the caller's namespace. The subroutine is called with an optional string (the I), followed by a mandatory hash reference (the I), followed by a list of zero-or-more strings (the I). The values of the configurations hash must all be subroutine references. If the optional flag is specified, C searches the selector list looking for that string, then uses the I item in the selector list as its I. If that selector value is a string, C looks up that key in the hash, and installs the corresponding subroutine as the namespace's C handler (an exception is thrown if the selector string is not a valid key of the configurations hash). If the selector value is a subroutine reference, C installs that subroutine as the C handler. If the optional flag is I specified, C searches the entire selector list looking for the last element that matches any key in the configurations hash. It then looks up that key in the hash, and installs the corresponding subroutine as the namespace's C handler. See L for examples of using this feature. =back =head2 Lvalue contexts =over =item C<< LVALUE >> This block is executed when the result of an C<:lvalue> subroutine is assigned to. The assigned value is passed to the block as C<$_>. To access the caller's C<$_> value, use C<$CALLER::_>. =item C<< RVALUE >> This block is executed when the result of an C<:lvalue> subroutine is used as an rvalue. The final value that is evaluated in the block becomes the rvalue. =item C<< NVALUE >> This block is executed when an C<:lvalue> subroutine is evaluated in void context. =back =head2 Explicit result blocks =over =item C<< RESULT >> This block may only appear inside a context handler block. It causes the surrounding handler to return the final value of the C's block, rather than the final value of the handler's own block. This override occurs regardless of the location to the C block within the handler. =back =head2 Recovery blocks =over =item C<< RECOVER >> If present in a context return sequence, this block grabs control after any context handler returns or exits via an exception. If an exception was thrown it is passed to the C block via the C<$@> variable. =back =head2 Modifiers =over =item C<< FIXED >> This specifies that the scalar value will only be evaluated once, the first time it is used, and that the value will then morph into that evaluated value. =item C<< ACTIVE >> This specifies that the scalar value's originating block will be re- evaluated every time the return value is used. =back =head1 DIAGNOSTICS =over =item Can't call %s in %s context"; The subroutine you called uses a contextual return, but doesn't specify what to return in the particular context in which you called it. You either need to change the context in which you're calling the subroutine, or else add a context block corresponding to the offending context (or perhaps a C block). =item %s can't return a %s reference"; You called the subroutine in a context that expected to get back a reference of some kind but the subroutine didn't specify the corresponding C, C, C, C, C, or generic C, C, or C handlers. You need to specify the appropriate one of these handlers in the subroutine. =item Can't call method '%s' on %s value returned by %s"; You called the subroutine and then tried to call a method on the return value, but the subroutine returned a classname or object that doesn't have that method. This probably means that the subroutine didn't return the classname or object you expected. Or perhaps you need to specify an C context block. =item Can't install two %s handlers You attempted to specify two context blocks of the same name in the same return context, which is ambiguous. For example: sub foo: lvalue { LVALUE { $foo = $_ } RVALUE { $foo } LVALUE { $foo = substr($_,1,10) } } or: sub bar { return BOOL { 0 } NUM { 1 } STR { "two" } BOOL { 1 }; } Did you cut-and-paste wrongly, or mislabel one of the blocks? =item Expected a %s block after the %s block but found instead: %s If you specify any of C, C, or C, then you can only specify C, C, or C blocks in the same return context. If you need to specify other contexts (like C, or C, or C, etc.), put them inside an C block. See L for an example. =item Call to %s failed at %s. This is the default exception that a C throws in a non-scalar context. Which means that the subroutine you called has signalled failure by throwing an exception, and you didn't catch that exception. You should either put the call in an C block or else call the subroutine in boolean context instead. =item Call to %s failed at %s. Failure value used at %s This is the default exception that a C throws when a failure value is captured in a scalar variable and later used in a non-boolean context. That means that the subroutine you called must have failed, and you didn't check the return value for that failure, so when you tried to use that invalid value it killed your program. You should either put the original call in an C or else test the return value in a boolean context and avoid using it if it's false. =item Usage: FAIL_WITH $flag_opt, \%selector, @args The C subroutine expects an optional flag, followed by a reference to a configuration hash, followed by a list or selector arguments. You gave it something else. See L. =item Selector values must be sub refs You passed a configuration hash to C that specified non- subroutines as possible C handlers. Since non-subroutines can't possibly be handlers, maybe you forgot the C keyword somewhere? =item Invalid option: %s => %s The C subroutine was passed a flag/selector pair, but the selector was not one of those allowed by the configuration hash. =item FAIL handler for package %s redefined A warning that the C handler for a particular package was reconfigured more than once. Typically that's because the module was loaded in two places with difference configurations specified. You can't reasonably expect two different sets of behaviours from the one module within the one namespace. =back =head1 CONFIGURATION AND ENVIRONMENT Contextual::Return requires no configuration files or environment variables. =head1 DEPENDENCIES Requires version.pm and Want.pm. =head1 INCOMPATIBILITIES None reported. =head1 BUGS AND LIMITATIONS No bugs have been reported. =head1 AUTHOR Damian Conway C<< >> =head1 LICENCE AND COPYRIGHT Copyright (c) 2005-2006, Damian Conway C<< >>. All rights reserved. This module is free software; you can redistribute it and/or modify it under the same terms as Perl itself. =head1 DISCLAIMER OF WARRANTY BECAUSE THIS SOFTWARE IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE SOFTWARE, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE SOFTWARE "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE SOFTWARE AS PERMITTED BY THE ABOVE LICENCE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE SOFTWARE TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.