/* pwlib/src/ptlib/unix/beaudio/Resampler.h $Log: Resampler.h,v $ Revision 1.4 2002/02/04 03:15:47 yurik VC compiler complained of invoking new on array with paramters in constructor. Fixed it. Revision 1.3 2001/07/09 06:16:15 yurik Jac Goudsmit's BeOS changes of July,6th. Cleaning up media subsystem etc. Copyright 2001, Be Incorporated. All Rights Reserved. This file may be used under the terms of the Be Sample Code License. */ #include template class History { // This class stores a number of input samples in a circular buffer // The data is actually stored twice so that a wrap-around is never // needed for retrieving the data (it IS needed for storing it, but // because most resampling algorithms use interpolation of a number // of input samples, retrieving happens much more frequent than // storing). // The history is always filled completely: the start of the history // is padded with neutral samples (e.g. 0 for signed integer samples). // Therefore we only need one index into the array: a pointer to // the oldest sample (we keep a couple of additional pointers for // efficiency). // For example: let's say the object is constructed with size=3 // and samples A B C D E are added. The internal representation and the // way that the retrieve function sees it are as follows: // Internal ('>' is head): retrieved data // >0 0 0 0 0 0 {0,0,0} // A>0 0 A 0 0 {0,0,A} // A B>0 A B 0 {0,A,B} // >A B C A B C {A,B,C} // D>B C D B C {B,C,D} // D E>C D E C {C,D,E} // Notice that the last element in the buffer is never retrieved, so // we could make the buffer one element smaller, but then we would // have to add another "if" to the storage code to not store the second // copy of the data when the head pointer reaches the end of the buffer. // Note: this class is not multi-thread compatible. private: size_t mSize; // number of unique copies of each sample in buffer T *mBuf; // twice the size indicated in mSize T *mHead; // pointer to oldest sample T *mLoop; // kept equal to mBuf+mSize T *mSecHead; // kept equal to mHead+mSize public: History() {}; // default constructor to please vc's new for arrays. void Init(size_t size, T neutralvalue) // init with original constructor values { // The data is stored twice, so create a buffer that's double the requested size mBuf=mHead=mSecHead=mLoop=new T[2*(mSize=size)]; // Fill the buffer with empty samples for (unsigned i=0; i class BaseResampler { // - A "correspondance" is defined as the point in time when // an input sample's time corresponds with its output sample's time. // - A "block" is defined as the time that passes between two correspondances // - By mathematical rule, if input frequency and output frequency are // expressed in samples per second, the number of correspondances per // second is the Highest Common Factor (HCF) of the two frequencies. // - The resolution at which time needs to be measured within a block is // defined as a "tick". The number of ticks per block is the result of // multiplying the number of input samples per block and the number of // output samples per block. protected: ////////// Types typedef History SampleHistory; ////////// Configuration // This data doesn't change after setup // The number of ticks per block is mInum*mOnum. // Therefore the number of ticks per input sample is (mInum*mOnum)/mInum=mOnum. The // number of ticks per output sample is (mInum*mOnum)/mOnum=mInum. // float mIFreq; // input frequency in frames/second // float mOFreq; // output frequency in frames/second unsigned mIChannels; // number of input channels unsigned mOChannels; // number of output channels // unsigned mHCF; // Highest Common Factor of mIFreq/mOFreq unsigned mINum; // number of input samples per block = mIFreq/mHCF unsigned mONum; // number of output samples per block = mOFreq/mHCF #define mITPS mONum // input ticks per sample #define mOTPS mINum // output ticks per sample IntSample mNeutralValue; // neutral value ////////// Status // This data changes with each input sample unsigned mICount; // input samples received since last coinciding unsigned mOCount; // output samples generated since last coinciding unsigned mITicks; // tick count for mICount (=mICount*mITPS) unsigned mOTicks; // tick count for mOCount (=mOCount*mOTPS) SampleHistory *mHistory; // one sample history per channel static size_t hcf( size_t a, size_t b) { // The Highest Common Factor (HCF) is defined as the largest number that // two positive integer values can both be divided by without leaving // a remainder. // For example: HCF(12,21)=3, HCF(12,23)=1, HCF(12,24)=12. // This function uses Euclid's algorithm to determine HCF(a,b) // The result is only valid when a and b are both positive. size_t r; // the algorithm only works for a>=b if (a=1 { // Configuration (parameterized part) unsigned IFreq=static_cast(infreq); unsigned OFreq=static_cast(outfreq); mIChannels=inchannels; mOChannels=outchannels; mNeutralValue=ToIntSample(neutralvalue); // Configuration (derived part) unsigned HCF=hcf(IFreq, OFreq); mINum=IFreq/HCF; mONum=OFreq/HCF; // Status mICount=0; //mICount=(((delay+mINum-1)/mINum)*mINum-delay); mITicks=0; //mITicks=mICount*mITPS; mOCount=0; mOTicks=0; mHistory = new SampleHistory[mIChannels]; for (unsigned u = 0; u < mIChannels; u++) mHistory[u].Init(historysize,mNeutralValue); } public: virtual ~BaseResampler() { delete[] mHistory; } public: size_t InFrameSize() { return mIChannels*sizeof(ISample); } size_t OutFrameSize() { return mOChannels*sizeof(OSample); } size_t InBlockSize() { return mINum*InFrameSize(); } size_t OutBlockSize() { return mONum*OutFrameSize(); } size_t InFramesFromOutBytes(size_t outbytes) { return outbytes*mINum/(mONum*OutFrameSize()); } size_t OutFramesFromInBytes(size_t inbytes) { return inbytes*mONum/(mINum*InFrameSize()); } size_t InBytesFromOutBytes(size_t outbytes) { return InFramesFromOutBytes(outbytes)*InFrameSize(); } size_t OutBytesFromInBytes(size_t inbytes) { return OutFramesFromInBytes(inbytes)*OutFrameSize(); } protected: // Virtual function to convert sample from input format to internal format. // The default implementation is a cast, but if the signed-ness of the formats are // different, you will need to override this to add or subtract the neutral value // and if the ranges of values don't match you will need to add a multiplication or // division. virtual IntSample ToIntSample(ISample value) { return static_cast(value); } // Virtual function to convert sample from internal format to output format. // The default implementation is a cast, but if the signed-ness of the formats are // different, you will need to override this to add or subtract the neutral value // and if the ranges of values don't match you will need to add a multiplication or // division. virtual OSample ToOSample(IntSample value) { return static_cast(value); } // Pure virtual function that does the actual resampling // It should use the sample history to generate a sample. virtual IntSample OutSample(SampleHistory &history) { IntSample y0=history[0]; IntSample y1=history[1]; // Note: it's possible to optimize the division in the next line // by creating a table in the constructor with mITPS entries // where table[n]=n/mITPS and changing the calculation to // y0+(y1-y0)*table[deltaticks] return y0+(IntSample)(mOTicks-mITicks)*(y1-y0)/(IntSample)mITPS; } // Virtual function to resample a frame. // It needs to examine the histories for all channels and generate an // output frame at the given pointer, and then update the pointer. virtual void OutFrame(OSample **io_out) { unsigned i,j; for (i=0, j=0; i Resampler;