
test-tc(1) test-tc(1)

NAME test-tc.py
Test driver to exercise the tconfpy Python module.

SYNOPSIS
test-tc.py [symtbl] [inmem] [nonewvars] [templates] [temponly] [limitns] [litvars] [nopredefs] [debug] cfg-
file, ...

OPTIONS
symtbl This option causes the test driver to include a symbol table with some predefined test variables in

it. These are useful for experimenting with variable dereferencing, substitution, and type/value
enforcement. The variables created are:

Name Val RO Type Def Legal Values Min/Max
--

int1 1 True int 0 [1, 2, 23] None None
int2 1 True int 0 [] 1 30
float1 1.0 None float 0.5 [3.14, 2.73] None None
float2 1.0 None float 0.5 [] -1.2 0.5
str1 "stringy" None None None [r’ˆbox$’, r’ˆBax’, r’a+bc’] 3 8
cmplx1 4+5j None complex 0-0j [] None None
cmplx2 4+5j None complex 0-0j [1-1j 1+1j] None None
bool1 True None boolean None None None None
ro1 "ReadVar" False None None None None None

Notice that some of the fields are defined as None. In this case, that parameter is set to its default
value when the variable is created. (See the tconfpy documentation regarding the VarDe-
scriptor object for the details.)

The default is to not predefine any such variables. (Note that whether this option is present or not,
tconfpy always creates a number of predefined variables of its own internally. See the
tconfpy documentation for the details.)

You can see all the predefined variables (and their attributes) by running test-tc.py on an
empty configuration file. This will show you both the variables automatically defined by
tconfpy as well as any variables created with this option, if present.

inmem Read each cfgile specified on the command line into an in-memory list, and pass this list to the
parser. This exercises the in-memory parsing capabilities of tconfpy. It is primarily provided
as a diagnostic tool for anyone modifying the parser code.

nonewvars

This option disables the creation of new variables in the configuration file (via the AllowNew-
Vars API option). The user is limited to referencing and modifying only those variables already
present in the symbol table. Typically used when passing an initial symbol table to the parser to
limit the user to only those variables. The default is to permit new variable creation.

templates

This option creates a default set of variable templates for use in the configuration file. These are

TundraWare Inc. 1

test-tc(1) test-tc(1)

passed to the tconfpy parser via the Templates={} API option.

The following variable templates are predefined when this option is used:

Name Val RO Type Def Legal Values Min/Max
--

templb 1 RW boolean False [] None None
templc 4+5j RW complex 0-0j [1-1j, 1+1j] None None
templf 1.0 RW float 0.5 [3.14, 2.73] None None
templi 1 RW int 0 [1, 2, 23] None None
templs "stringy" RW string "" [r’ˆbox$’, r’ˆBax’, r’a+bc’] 3 8

temponly

This option will only permit new variable creation if a template for that variable exists (via the
TemplatesOnly=True parser API option). This is used in conjunction with the templates
option above.

limitns This option will populate the initial symbol table so that only a limited number of namespaces can
be used. If this option is present, only the root namespace, and namespaces beginning with the
string "NS" will be allowed. In this case, namespaces will be required to be from 3 to 8 characters
long. The default without this option is to allow new namespaces to be used without restrictions
on name or length. The initial namespace is set to root ("") whether or not this option is selected.

litvars By default, tconfpy does nothing to text encountered inside of .literal blocks in a configu-
ration file. If this option is present, the test driver tells tconfpy to replace any variable refer-
ences present in a .literal block. See the tconfpy documentation for a more complete
description.

nopredefs
This option tells the parser (via the ReturnPredefs=False API option) to not include any of
its own predefined variables in the symbol table it returns.

debug This option causes the test driver to inv oke tconfpy with debugging enabled and then display
debug output when parsing is complete. The default is for debug output to be disabled.

ADDING OR CHANGING PREDEFINED VARIABLES IN THE TEST DRIVER
This test driver uses a simple table-driven scheme for predefining variables should you desire this feature.
This can be found near the beginning of the test-tc.py file. All this should be fairly self-explanatory
once you understand the various variable attributes recognized by tconfpy. Edit this table as desired to
create more variables or different attribute values for your testing purposes.

The exact same scheme is used for predefining variable templates and you can add/delete/change these to
suit your own tastes in the same way.

OTHER
Requires Python 2.3 or later.

TundraWare Inc. 2

test-tc(1) test-tc(1)

BUGS AND MISFEATURES
The symbol table dump at the end of a program run could be formatted better.

COPYRIGHT AND LICENSING
test-tc is part of the tconfpy package and is Copyright (c) 2003-2005 TundraWare Inc. For terms of
use, see the tconfpy-license.txt file in the program distribution. If you install tconfpy on a FreeBSD sys-
tem using the ’ports’ mechanism, you will also find this file in /usr/local/share/doc/py-tconfpy.

AUTHOR
Tim Daneliuk
tconfpy@tundraware.com

DOCUMENT REVISION INFORMATION
$Id: test-tc.1,v 1.113 2005/01/20 10:35:04 tundra Exp $

TundraWare Inc. 3

