/* * Copyright (c) 2007 The Akuma Project * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * $Id: rule-tail.c 133 2007-05-29 14:32:04Z asmodai $ */ /* Crown Copyright (c) 1997 This TenDRA(r) Computer Program is subject to Copyright owned by the United Kingdom Secretary of State for Defence acting through the Defence Evaluation and Research Agency (DERA). It is made available to Recipients with a royalty-free licence for its use, reproduction, transfer to other parties and amendment for any purpose not excluding product development provided that any such use et cetera shall be deemed to be acceptance of the following conditions:- (1) Its Recipients shall ensure that this Notice is reproduced upon any copies or amended versions of it; (2) Any amended version of it shall be clearly marked to show both the nature of and the organisation responsible for the relevant amendment or amendments; (3) Its onward transfer from a recipient to another party shall be deemed to be that party's acceptance of these conditions; (4) DERA gives no warranty or assurance as to its quality or suitability for any purpose and DERA accepts no liability whatsoever in relation to any use to which it may be put. */ /*** rule-tail.c --- Tail recursion elimination routines. * ** Author: Steve Folkes * *** Commentary: * * This file implements the SID inlining routines. * * There are five separate phases implemented in this file. * * The first phase is to find and eliminate all tail recursive cycles that * each rule is involved in. The cycles are detected by the * ``grammar_compute_inlining'' function in the file "grammar.c". For each * cyclic group that is found, the ``rule_handle_tails'' function is called to * remove the cycle. All rules in the cycle are marked as being cyclic, and * are given a unique identification that is the same for all members of the * cycle (but different for members of different cycles). The tail recursive * calls are marked as inlinable and tail recursive, and the rules' call * graphs are computed (this is the set of rules that will make tail calls). * This phase is only performed if tail recursion inlining is enabled. * * The second phase is implemented by the ``rule_compute_all_basics'' * function. This marks a rule that only contains basics as such. This phase * is only performed if all basic inlining is enabled. * * The third phase is implemented by the ``rule_compute_inlining'' function. * This marks all calls to all basic rules as inlinable. If single * alternative rule inlining is enabled, then all calls to single alternative * rules are marked as inlinable. If non tail recursion inlining is enabled, * it also marks all other calls as inlinable, and computes their call count * if functions that are called more than once are not to be inlined (the * output routines won't inline rules with a call count greater than one). * * The fourth phase is implemented by the ``rule_compute_needed_functions'' * function. It marks all required functions, and functions that are called * from a non-inlinable position as requiring function implementations. * * The final phase is implemented by the ``rule_handle_need_functions'' * function. The cycle detection routines are used in the * ``grammar_compute_inlining'' function to find cycles in the function call * graph. If any such cycles are found, then all of the rules in the cycle * are marked as needing a function implementation. * *** Change Log: * $Log: rule-tail.c,v $ * Revision 1.1.1.1 1998/01/17 15:57:47 release * First version to be checked into rolling release. * * Revision 1.3 1994/12/15 09:58:53 smf * Brought into line with OSSG C Coding Standards Document, as per * "CR94_178.sid+tld-update". * * Revision 1.2 1994/11/11 11:47:09 smf * Fixed a bug in the tail recursion elimination, for bug fix * CR94_127.sid-tail-rec. * There was a problem with tail calls that had reference parameters in an * earlier version of SID, and they had been disabled. This should have been * fixed when the output routines were fixed to do references properly, but the * check wasn't removed. It has been now. * * Revision 1.1.1.1 1994/07/25 16:04:41 smf * Initial import of SID 1.8 non shared files. * **/ /****************************************************************************/ #include "rule.h" #include "action.h" #include "basic.h" #include "entry-list.h" #include "name.h" #include "type.h" /*--------------------------------------------------------------------------*/ typedef struct CycleHeadT { RuleP head; RuleP *tail; } CycleHeadT, *CycleHeadP; typedef struct RuleStackT { struct RuleStackT *next; RuleP rule; } RuleStackT, *RuleStackP; /*--------------------------------------------------------------------------*/ static BoolT rule_do_inline_tail_calls = TRUE; static BoolT rule_do_inline_all_basics = TRUE; static BoolT rule_do_inline_singles = FALSE; static BoolT rule_do_inline_non_tail_calls = FALSE; static BoolT rule_do_multiple_inlining = FALSE; /*--------------------------------------------------------------------------*/ static void rule_inline_tail_calls_1(RuleP rule, AltP alt, RuleP tail_group) { ItemP item = alt_item_head(alt); ItemP next; while ((next = item_next(item)) != NIL(ItemP)) { item = next; } if (item_is_rule(item)) { RuleP item_rule = entry_get_rule(item_entry(item)); if ((rule_get_tail_group(item_rule) == tail_group) && (types_equal_names(rule_result(rule), item_result(item)))) { item_inlinable(item); item_tail_call(item); } } } static void rule_inline_tail_calls(RuleP rule) { RuleP tail_group = rule_get_tail_group(rule); AltP alt; if ((alt = rule_get_handler(rule)) != NIL(AltP)) { rule_inline_tail_calls_1(rule, alt, tail_group); } for (alt = rule_alt_head(rule); alt; alt = alt_next(alt)) { rule_inline_tail_calls_1(rule, alt, tail_group); } } static void rule_compute_call_graph(RuleP, EntryListP, RuleStackP); static void rule_compute_call_graph_1(AltP alt, EntryListP call_list, RuleStackP next) { ItemP item = alt_item_head(alt); ItemP next_item; while ((next_item = item_next(item)) != NIL(ItemP)) { item = next_item; } if (item_is_tail_call(item)) { EntryP entry = item_entry(item); RuleP item_rule = entry_get_rule(entry); rule_compute_call_graph(item_rule, call_list, next); } } static void rule_compute_call_graph(RuleP rule, EntryListP call_list, RuleStackP next) { RuleStackT stack; AltP alt; stack.rule = rule; stack.next = next; while (next) { if (next->rule == rule) { entry_list_add_if_missing(call_list, rule_entry(rule)); return; } next = next->next; } if ((alt = rule_get_handler(rule)) != NIL(AltP)) { rule_compute_call_graph_1(alt, call_list, &stack); } for (alt = rule_alt_head(rule); alt; alt = alt_next(alt)) { rule_compute_call_graph_1(alt, call_list, &stack); } } static void rule_compute_all_basics_1(RuleP rule) { if ((!rule_has_empty_alt(rule)) && (rule_get_handler(rule) == NIL(AltP))) { AltP alt; for (alt = rule_alt_head(rule); alt; alt = alt_next(alt)) { ItemP item; for (item = alt_item_head(alt); item; item = item_next(item)) { if (!item_is_basic(item)) { return; } } } rule_all_basics(rule); } } static void rule_compute_inlining_1(RuleP); static void rule_compute_inlining_2(AltP alt) { ItemP item; for (item = alt_item_head(alt); item; item = item_next(item)) { if ((item_is_rule(item)) && (!item_is_tail_call(item))) { EntryP entry = item_entry(item); RuleP item_rule = entry_get_rule(entry); if (rule_is_all_basics(item_rule)) { item_inlinable(item); } else if (rule_do_inline_singles && rule_has_one_alt(item_rule)) { item_inlinable(item); } else if (!rule_do_multiple_inlining) { rule_inc_call_count(item_rule); } if (rule_do_inline_non_tail_calls) { item_inlinable(item); } rule_compute_inlining_1(item_rule); } } } static void rule_compute_inlining_1(RuleP rule) { if (!rule_is_checked_for_inlining(rule)) { if (!rule_is_being_inlined(rule)) { AltP alt; rule_being_inlined(rule); if ((alt = rule_get_handler(rule)) != NIL(AltP)) { rule_compute_inlining_2(alt); } for (alt = rule_alt_head(rule); alt; alt = alt_next(alt)) { rule_compute_inlining_2(alt); } rule_checked_for_inlining(rule); } } } static void rule_compute_needed_functions_2(AltP alt) { ItemP item; for (item = alt_item_head(alt); item; item = item_next(item)) { if (item_is_rule(item)) { RuleP item_rule = entry_get_rule(item_entry(item)); if ((!item_is_inlinable(item)) || (rule_get_call_count(item_rule) > 1)) { rule_will_need_function(item_rule); } } } } static void rule_compute_needed_functions_1(RuleP rule) { AltP alt; if ((alt = rule_get_handler(rule)) != NIL(AltP)) { rule_compute_needed_functions_2(alt); } for (alt = rule_alt_head(rule); alt; alt = alt_next(alt)) { rule_compute_needed_functions_2(alt); } } /*--------------------------------------------------------------------------*/ void rule_handle_tails(RuleP rule_list) { RuleP rule; for (rule = rule_list; rule; rule = rule_get_next_in_reverse_dfs(rule)) { rule_set_tail_group(rule, rule_list); rule_no_cycles(rule); } for (rule = rule_list; rule; rule = rule_get_next_in_reverse_dfs(rule)) { rule_inline_tail_calls(rule); } for (rule = rule_list; rule; rule = rule_get_next_in_reverse_dfs(rule)) { rule_compute_call_graph(rule, rule_call_list(rule), NIL(RuleStackP)); } } void rule_compute_all_basics(EntryP entry, GenericP gclosure) { UNUSED(gclosure); if (rule_do_inline_all_basics && entry_is_rule(entry)) { RuleP rule = entry_get_rule(entry); rule_compute_all_basics_1(rule); } } void rule_compute_inlining(EntryP entry, GenericP gclosure) { UNUSED(gclosure); if (entry_is_rule(entry)) { RuleP rule = entry_get_rule(entry); rule_compute_inlining_1(rule); } } void rule_compute_needed_functions(EntryP entry, GenericP gclosure) { UNUSED(gclosure); if (entry_is_rule(entry)) { RuleP rule = entry_get_rule(entry); rule_compute_needed_functions_1(rule); } } void rule_handle_need_functions(RuleP rule_list) { RuleP rule; for (rule = rule_list; rule; rule = rule_get_next_in_reverse_dfs(rule)) { rule_will_need_function(rule); } } BoolT rule_get_inline_tail_calls(void) { return(rule_do_inline_tail_calls); } void rule_set_inline_tail_calls(BoolT enable) { rule_do_inline_tail_calls = enable; } void rule_set_inline_all_basics(BoolT enable) { rule_do_inline_all_basics = enable; } void rule_set_inline_singles(BoolT enable) { rule_do_inline_singles = enable; } void rule_set_inline_non_tail_calls(BoolT enable) { if (enable) { rule_do_inline_non_tail_calls = TRUE; } else { rule_do_inline_non_tail_calls = FALSE; rule_do_multiple_inlining = FALSE; } } void rule_set_multiple_inlining(BoolT enable) { if (enable) { rule_do_inline_non_tail_calls = TRUE; rule_do_multiple_inlining = TRUE; } else { rule_do_multiple_inlining = FALSE; } } /* * Local variables(smf): * eval: (include::add-path-entry "../os-interface" "../library") * eval: (include::add-path-entry "../generated") * end: **/