/*
*
* Template Numerical Toolkit (TNT)
*
* Mathematical and Computational Sciences Division
* National Institute of Technology,
* Gaithersburg, MD USA
*
*
* This software was developed at the National Institute of Standards and
* Technology (NIST) by employees of the Federal Government in the course
* of their official duties. Pursuant to title 17 Section 105 of the
* United States Code, this software is not subject to copyright protection
* and is in the public domain. NIST assumes no responsibility whatsoever for
* its use by other parties, and makes no guarantees, expressed or implied,
* about its quality, reliability, or any other characteristic.
*
*/
// C compatible matrix: row-oriented, 0-based [i][j] and 1-based (i,j) indexing
//
#ifndef TNT_CMAT_H
#define TNT_CMAT_H
#include "tnt_subscript.h"
#include "tnt_vec.h"
#include <cstdlib>
#include <cassert>
#include <iostream>
#include <sstream>
namespace TNT
{
template <class T>
class Matrix
{
public:
typedef Subscript size_type;
typedef T value_type;
typedef T element_type;
typedef T* pointer;
typedef T* iterator;
typedef T& reference;
typedef const T* const_iterator;
typedef const T& const_reference;
Subscript lbound() const { return 1;}
protected:
Subscript m_;
Subscript n_;
Subscript mn_; // total size
T* v_;
T** row_;
T* vm1_ ; // these point to the same data, but are 1-based
T** rowm1_;
// internal helper function to create the array
// of row pointers
void initialize(Subscript M, Subscript N)
{
mn_ = M*N;
m_ = M;
n_ = N;
v_ = new T[mn_];
row_ = new T*[M];
rowm1_ = new T*[M];
assert(v_ != NULL);
assert(row_ != NULL);
assert(rowm1_ != NULL);
T* p = v_;
vm1_ = v_ - 1;
for (Subscript i=0; i<M; i++)
{
row_[i] = p;
rowm1_[i] = p-1;
p += N ;
}
rowm1_ -- ; // compensate for 1-based offset
}
void copy(const T* v)
{
Subscript N = m_ * n_;
Subscript i;
#ifdef TNT_UNROLL_LOOPS
Subscript Nmod4 = N & 3;
Subscript N4 = N - Nmod4;
for (i=0; i<N4; i+=4)
{
v_[i] = v[i];
v_[i+1] = v[i+1];
v_[i+2] = v[i+2];
v_[i+3] = v[i+3];
}
for (i=N4; i< N; i++)
v_[i] = v[i];
#else
for (i=0; i< N; i++)
v_[i] = v[i];
#endif
}
void set(const T& val)
{
Subscript N = m_ * n_;
Subscript i;
#ifdef TNT_UNROLL_LOOPS
Subscript Nmod4 = N & 3;
Subscript N4 = N - Nmod4;
for (i=0; i<N4; i+=4)
{
v_[i] = val;
v_[i+1] = val;
v_[i+2] = val;
v_[i+3] = val;
}
for (i=N4; i< N; i++)
v_[i] = val;
#else
for (i=0; i< N; i++)
v_[i] = val;
#endif
}
void destroy()
{
/* do nothing, if no memory has been previously allocated */
if (v_ == NULL) return ;
/* if we are here, then matrix was previously allocated */
if (v_ != NULL) delete [] (v_);
if (row_ != NULL) delete [] (row_);
/* return rowm1_ back to original value */
rowm1_ ++;
if (rowm1_ != NULL ) delete [] (rowm1_);
}
public:
operator T**(){ return row_; }
operator T**() const { return row_; }
Subscript size() const { return mn_; }
// constructors
Matrix() : m_(0), n_(0), mn_(0), v_(0), row_(0), vm1_(0), rowm1_(0) {};
Matrix(const Matrix<T> &A)
{
initialize(A.m_, A.n_);
copy(A.v_);
}
Matrix(Subscript M, Subscript N, const T& value = T())
{
initialize(M,N);
set(value);
}
Matrix(Subscript M, Subscript N, const T* v)
{
initialize(M,N);
copy(v);
}
Matrix(Subscript M, Subscript N, const char *s)
{
initialize(M,N);
//std::istrstream ins(s);
std::istringstream ins(s);
Subscript i, j;
for (i=0; i<M; i++)
for (j=0; j<N; j++)
ins >> row_[i][j];
}
// destructor
//
~Matrix()
{
destroy();
}
// reallocating
//
Matrix<T>& newsize(Subscript M, Subscript N)
{
if (num_rows() == M && num_cols() == N)
return *this;
destroy();
initialize(M,N);
return *this;
}
// assignments
//
Matrix<T>& operator=(const Matrix<T> &A)
{
if (v_ == A.v_)
return *this;
if (m_ == A.m_ && n_ == A.n_) // no need to re-alloc
copy(A.v_);
else
{
destroy();
initialize(A.m_, A.n_);
copy(A.v_);
}
return *this;
}
Matrix<T>& operator=(const T& scalar)
{
set(scalar);
return *this;
}
Subscript dim(Subscript d) const
{
#ifdef TNT_BOUNDS_CHECK
assert( d >= 1);
assert( d <= 2);
#endif
return (d==1) ? m_ : ((d==2) ? n_ : 0);
}
Subscript num_rows() const { return m_; }
Subscript num_cols() const { return n_; }
inline T* operator[](Subscript i)
{
#ifdef TNT_BOUNDS_CHECK
assert(0<=i);
assert(i < m_) ;
#endif
return row_[i];
}
inline const T* operator[](Subscript i) const
{
#ifdef TNT_BOUNDS_CHECK
assert(0<=i);
assert(i < m_) ;
#endif
return row_[i];
}
inline reference operator()(Subscript i)
{
#ifdef TNT_BOUNDS_CHECK
assert(1<=i);
assert(i <= mn_) ;
#endif
return vm1_[i];
}
inline const_reference operator()(Subscript i) const
{
#ifdef TNT_BOUNDS_CHECK
assert(1<=i);
assert(i <= mn_) ;
#endif
return vm1_[i];
}
inline reference operator()(Subscript i, Subscript j)
{
#ifdef TNT_BOUNDS_CHECK
assert(1<=i);
assert(i <= m_) ;
assert(1<=j);
assert(j <= n_);
#endif
return rowm1_[i][j];
}
inline const_reference operator() (Subscript i, Subscript j) const
{
#ifdef TNT_BOUNDS_CHECK
assert(1<=i);
assert(i <= m_) ;
assert(1<=j);
assert(j <= n_);
#endif
return rowm1_[i][j];
}
};
/* *************************** I/O ********************************/
template <class T>
std::ostream& operator<<(std::ostream &s, const Matrix<T> &A)
{
Subscript M=A.num_rows();
Subscript N=A.num_cols();
s << M << " " << N << "\n";
for (Subscript i=0; i<M; i++)
{
for (Subscript j=0; j<N; j++)
{
s << A[i][j] << " ";
}
s << "\n";
}
return s;
}
template <class T>
std::istream& operator>>(std::istream &s, Matrix<T> &A)
{
Subscript M, N;
s >> M >> N;
if ( !(M == A.num_rows() && N == A.num_cols() ))
{
A.newsize(M,N);
}
for (Subscript i=0; i<M; i++)
for (Subscript j=0; j<N; j++)
{
s >> A[i][j];
}
return s;
}
// *******************[ basic matrix algorithms ]***************************
template <class T>
Matrix<T> operator+(const Matrix<T> &A,
const Matrix<T> &B)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
assert(M==B.num_rows());
assert(N==B.num_cols());
Matrix<T> tmp(M,N);
Subscript i,j;
for (i=0; i<M; i++)
for (j=0; j<N; j++)
tmp[i][j] = A[i][j] + B[i][j];
return tmp;
}
template <class T>
Matrix<T> operator-(const Matrix<T> &A,
const Matrix<T> &B)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
assert(M==B.num_rows());
assert(N==B.num_cols());
Matrix<T> tmp(M,N);
Subscript i,j;
for (i=0; i<M; i++)
for (j=0; j<N; j++)
tmp[i][j] = A[i][j] - B[i][j];
return tmp;
}
template <class T>
Matrix<T> mult_element(const Matrix<T> &A,
const Matrix<T> &B)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
assert(M==B.num_rows());
assert(N==B.num_cols());
Matrix<T> tmp(M,N);
Subscript i,j;
for (i=0; i<M; i++)
for (j=0; j<N; j++)
tmp[i][j] = A[i][j] * B[i][j];
return tmp;
}
template <class T>
Matrix<T> transpose(const Matrix<T> &A)
{
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Matrix<T> S(N,M);
Subscript i, j;
for (i=0; i<M; i++)
for (j=0; j<N; j++)
S[j][i] = A[i][j];
return S;
}
template <class T>
inline Matrix<T> matmult(const Matrix<T> &A,
const Matrix<T> &B)
{
#ifdef TNT_BOUNDS_CHECK
assert(A.num_cols() == B.num_rows());
#endif
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Subscript K = B.num_cols();
Matrix<T> tmp(M,K);
T sum;
for (Subscript i=0; i<M; i++)
for (Subscript k=0; k<K; k++)
{
sum = 0;
for (Subscript j=0; j<N; j++)
sum = sum + A[i][j] * B[j][k];
tmp[i][k] = sum;
}
return tmp;
}
template <class T>
inline Matrix<T> operator*(const Matrix<T> &A,
const Matrix<T> &B)
{
return matmult(A,B);
}
template <class T>
inline int matmult(Matrix<T>& C, const Matrix<T> &A,
const Matrix<T> &B)
{
assert(A.num_cols() == B.num_rows());
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Subscript K = B.num_cols();
C.newsize(M,K);
T sum;
const T* row_i;
const T* col_k;
for (Subscript i=0; i<M; i++)
for (Subscript k=0; k<K; k++)
{
row_i = &(A[i][0]);
col_k = &(B[0][k]);
sum = 0;
for (Subscript j=0; j<N; j++)
{
sum += *row_i * *col_k;
row_i++;
col_k += K;
}
C[i][k] = sum;
}
return 0;
}
template <class T>
Vector<T> matmult(const Matrix<T> &A, const Vector<T> &x)
{
#ifdef TNT_BOUNDS_CHECK
assert(A.num_cols() == x.dim());
#endif
Subscript M = A.num_rows();
Subscript N = A.num_cols();
Vector<T> tmp(M);
T sum;
for (Subscript i=0; i<M; i++)
{
sum = 0;
const T* rowi = A[i];
for (Subscript j=0; j<N; j++)
sum = sum + rowi[j] * x[j];
tmp[i] = sum;
}
return tmp;
}
template <class T>
inline Vector<T> operator*(const Matrix<T> &A, const Vector<T> &x)
{
return matmult(A,x);
}
} // namespace TNT
#endif
// CMAT_H
syntax highlighted by Code2HTML, v. 0.9.1