/*
*
* Template Numerical Toolkit (TNT)
*
* Mathematical and Computational Sciences Division
* National Institute of Technology,
* Gaithersburg, MD USA
*
*
* This software was developed at the National Institute of Standards and
* Technology (NIST) by employees of the Federal Government in the course
* of their official duties. Pursuant to title 17 Section 105 of the
* United States Code, this software is not subject to copyright protection
* and is in the public domain. NIST assumes no responsibility whatsoever for
* its use by other parties, and makes no guarantees, expressed or implied,
* about its quality, reliability, or any other characteristic.
*
*/

#ifndef TNT_FORTRAN_ARRAY1D_UTILS_H
#define TNT_FORTRAN_ARRAY1D_UTILS_H

#include <iostream>

namespace TNT
{


/**
	Write an array to a character outstream.  Output format is one that can
	be read back in via the in-stream operator: one integer
	denoting the array dimension (n), followed by n elements,
	one per line.  

*/
template <class T>
std::ostream& operator<<(std::ostream &s, const Fortran_Array1D<T> &A)
{
    int N=A.dim1();

    s << N << "\n";
    for (int j=1; j<=N; j++)
    {
       s << A(j) << "\n";
    }
    s << "\n";

    return s;
}

/**
	Read an array from a character stream.  Input format
	is one integer, denoting the dimension (n), followed
	by n whitespace-separated elments.  Newlines are ignored

	<p>
	Note: the array being read into references new memory
	storage. If the intent is to fill an existing conformant
	array, use <code> cin >> B;  A.inject(B) ); </code>
	instead or read the elements in one-a-time by hand.

	@param s the charater to read from (typically <code>std::in</code>)
	@param A the array to read into.
*/
template <class T>
std::istream& operator>>(std::istream &s, Fortran_Array1D<T> &A)
{
	int N;
	s >> N;

	Fortran_Array1D<T> B(N);
	for (int i=1; i<=N; i++)
		s >> B(i);
	A = B;
	return s;
}


template <class T>
Fortran_Array1D<T> operator+(const Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
	int n = A.dim1();

	if (B.dim1() != n )
		return Fortran_Array1D<T>();

	else
	{
		Fortran_Array1D<T> C(n);

		for (int i=1; i<=n; i++)
		{
			C(i) = A(i) + B(i);
		}
		return C;
	}
}



template <class T>
Fortran_Array1D<T> operator-(const Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
	int n = A.dim1();

	if (B.dim1() != n )
		return Fortran_Array1D<T>();

	else
	{
		Fortran_Array1D<T> C(n);

		for (int i=1; i<=n; i++)
		{
			C(i) = A(i) - B(i);
		}
		return C;
	}
}


template <class T>
Fortran_Array1D<T> operator*(const Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
	int n = A.dim1();

	if (B.dim1() != n )
		return Fortran_Array1D<T>();

	else
	{
		Fortran_Array1D<T> C(n);

		for (int i=1; i<=n; i++)
		{
			C(i) = A(i) * B(i);
		}
		return C;
	}
}


template <class T>
Fortran_Array1D<T> operator/(const Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
	int n = A.dim1();

	if (B.dim1() != n )
		return Fortran_Array1D<T>();

	else
	{
		Fortran_Array1D<T> C(n);

		for (int i=1; i<=n; i++)
		{
			C(i) = A(i) / B(i);
		}
		return C;
	}
}









template <class T>
Fortran_Array1D<T>&  operator+=(Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
	int n = A.dim1();

	if (B.dim1() == n)
	{
		for (int i=1; i<=n; i++)
		{
				A(i) += B(i);
		}
	}
	return A;
}




template <class T>
Fortran_Array1D<T>&  operator-=(Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
	int n = A.dim1();

	if (B.dim1() == n)
	{
		for (int i=1; i<=n; i++)
		{
				A(i) -= B(i);
		}
	}
	return A;
}



template <class T>
Fortran_Array1D<T>&  operator*=(Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
	int n = A.dim1();

	if (B.dim1() == n)
	{
		for (int i=1; i<=n; i++)
		{
				A(i) *= B(i);
		}
	}
	return A;
}




template <class T>
Fortran_Array1D<T>&  operator/=(Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
	int n = A.dim1();

	if (B.dim1() == n)
	{
		for (int i=1; i<=n; i++)
		{
				A(i) /= B(i);
		}
	}
	return A;
}


} // namespace TNT

#endif


syntax highlighted by Code2HTML, v. 0.9.1