/*
*
* Template Numerical Toolkit (TNT)
*
* Mathematical and Computational Sciences Division
* National Institute of Technology,
* Gaithersburg, MD USA
*
*
* This software was developed at the National Institute of Standards and
* Technology (NIST) by employees of the Federal Government in the course
* of their official duties. Pursuant to title 17 Section 105 of the
* United States Code, this software is not subject to copyright protection
* and is in the public domain. NIST assumes no responsibility whatsoever for
* its use by other parties, and makes no guarantees, expressed or implied,
* about its quality, reliability, or any other characteristic.
*
*/
#ifndef TNT_FORTRAN_ARRAY1D_UTILS_H
#define TNT_FORTRAN_ARRAY1D_UTILS_H
#include <iostream>
namespace TNT
{
/**
Write an array to a character outstream. Output format is one that can
be read back in via the in-stream operator: one integer
denoting the array dimension (n), followed by n elements,
one per line.
*/
template <class T>
std::ostream& operator<<(std::ostream &s, const Fortran_Array1D<T> &A)
{
int N=A.dim1();
s << N << "\n";
for (int j=1; j<=N; j++)
{
s << A(j) << "\n";
}
s << "\n";
return s;
}
/**
Read an array from a character stream. Input format
is one integer, denoting the dimension (n), followed
by n whitespace-separated elments. Newlines are ignored
<p>
Note: the array being read into references new memory
storage. If the intent is to fill an existing conformant
array, use <code> cin >> B; A.inject(B) ); </code>
instead or read the elements in one-a-time by hand.
@param s the charater to read from (typically <code>std::in</code>)
@param A the array to read into.
*/
template <class T>
std::istream& operator>>(std::istream &s, Fortran_Array1D<T> &A)
{
int N;
s >> N;
Fortran_Array1D<T> B(N);
for (int i=1; i<=N; i++)
s >> B(i);
A = B;
return s;
}
template <class T>
Fortran_Array1D<T> operator+(const Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
int n = A.dim1();
if (B.dim1() != n )
return Fortran_Array1D<T>();
else
{
Fortran_Array1D<T> C(n);
for (int i=1; i<=n; i++)
{
C(i) = A(i) + B(i);
}
return C;
}
}
template <class T>
Fortran_Array1D<T> operator-(const Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
int n = A.dim1();
if (B.dim1() != n )
return Fortran_Array1D<T>();
else
{
Fortran_Array1D<T> C(n);
for (int i=1; i<=n; i++)
{
C(i) = A(i) - B(i);
}
return C;
}
}
template <class T>
Fortran_Array1D<T> operator*(const Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
int n = A.dim1();
if (B.dim1() != n )
return Fortran_Array1D<T>();
else
{
Fortran_Array1D<T> C(n);
for (int i=1; i<=n; i++)
{
C(i) = A(i) * B(i);
}
return C;
}
}
template <class T>
Fortran_Array1D<T> operator/(const Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
int n = A.dim1();
if (B.dim1() != n )
return Fortran_Array1D<T>();
else
{
Fortran_Array1D<T> C(n);
for (int i=1; i<=n; i++)
{
C(i) = A(i) / B(i);
}
return C;
}
}
template <class T>
Fortran_Array1D<T>& operator+=(Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
int n = A.dim1();
if (B.dim1() == n)
{
for (int i=1; i<=n; i++)
{
A(i) += B(i);
}
}
return A;
}
template <class T>
Fortran_Array1D<T>& operator-=(Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
int n = A.dim1();
if (B.dim1() == n)
{
for (int i=1; i<=n; i++)
{
A(i) -= B(i);
}
}
return A;
}
template <class T>
Fortran_Array1D<T>& operator*=(Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
int n = A.dim1();
if (B.dim1() == n)
{
for (int i=1; i<=n; i++)
{
A(i) *= B(i);
}
}
return A;
}
template <class T>
Fortran_Array1D<T>& operator/=(Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
{
int n = A.dim1();
if (B.dim1() == n)
{
for (int i=1; i<=n; i++)
{
A(i) /= B(i);
}
}
return A;
}
} // namespace TNT
#endif
syntax highlighted by Code2HTML, v. 0.9.1