# oastats.py - Outlook Addin Stats
class Stats:
def __init__(self, config):
self.config = config
self.Reset()
def Reset(self):
self.num_ham = self.num_spam = self.num_unsure = 0
self.num_deleted_spam = self.num_deleted_spam_fn = 0
self.num_recovered_good = self.num_recovered_good_fp = 0
def RecordClassification(self, score):
score *= 100 # same units as our config values.
if score >= self.config.filter.spam_threshold:
self.num_spam += 1
elif score >= self.config.filter.unsure_threshold:
self.num_unsure += 1
else:
self.num_ham += 1
def RecordManualClassification(self, recover_as_good, score):
score *= 100 # same units as our config values.
if recover_as_good:
self.num_recovered_good += 1
# If we are recovering an item that is in the "spam" threshold,
# then record it as a "false positive"
if score > self.config.filter.spam_threshold:
self.num_recovered_good_fp += 1
else:
self.num_deleted_spam += 1
# If we are deleting as Spam an item that was in our "good" range,
# then record it as a false neg.
if score < self.config.filter.unsure_threshold:
self.num_deleted_spam_fn += 1
def GetStats(self):
num_seen = self.num_ham + self.num_spam + self.num_unsure
if num_seen==0:
return ["SpamBayes has processed zero messages"]
chunks = []
push = chunks.append
perc_ham = 100.0 * self.num_ham / num_seen
perc_spam = 100.0 * self.num_spam / num_seen
perc_unsure = 100.0 * self.num_unsure / num_seen
format_dict = dict(perc_spam=perc_spam, perc_ham=perc_ham,
perc_unsure=perc_unsure, num_seen = num_seen)
format_dict.update(self.__dict__)
push("SpamBayes has processed %(num_seen)d messages - " \
"%(num_ham)d (%(perc_ham).0f%%) good, " \
"%(num_spam)d (%(perc_spam).0f%%) spam " \
"and %(num_unsure)d (%(perc_unsure).0f%%) unsure" % format_dict)
if self.num_recovered_good:
push("%(num_recovered_good)d message(s) were manually " \
"classified as good (with %(num_recovered_good_fp)d " \
"being false positives)" % format_dict)
else:
push("No messages were manually classified as good")
if self.num_deleted_spam:
push("%(num_deleted_spam)d message(s) were manually " \
"classified as spam (with %(num_deleted_spam_fn)d " \
"being false negatives)" % format_dict)
else:
push("No messages were manually classified as spam")
return chunks
if __name__=='__main__':
class FilterConfig:
unsure_threshold = 15
spam_threshold = 85
class Config:
filter = FilterConfig()
# processed zero
s = Stats(Config())
print "\n".join(s.GetStats())
# No recovery
s = Stats(Config())
s.RecordClassification(.2)
print "\n".join(s.GetStats())
s = Stats(Config())
s.RecordClassification(.2)
s.RecordClassification(.1)
s.RecordClassification(.4)
s.RecordClassification(.9)
s.RecordManualClassification(True, 0.1)
s.RecordManualClassification(True, 0.9)
s.RecordManualClassification(False, 0.1)
s.RecordManualClassification(False, 0.9)
print "\n".join(s.GetStats())
syntax highlighted by Code2HTML, v. 0.9.1