from spambayes.Options import options
try:
True, False
except NameError:
# Maintain compatibility with Python 2.2
True, False = 1, 0
class Test:
# Pass a classifier instance (an instance of Bayes).
# Loop:
# # Train the classifer with new ham and spam.
# train(ham, spam) # this implies reset_test_results
# Loop:
# Optional:
# # Possibly fiddle the classifier.
# set_classifier()
# # Forget smessages the classifier was trained on.
# untrain(ham, spam) # this implies reset_test_results
# Optional:
# reset_test_results()
# # Predict against (presumably new) examples.
# predict(ham, spam)
# Optional:
# suck out the results, via instance vrbls and
# false_negative_rate(), false_positive_rate(),
# false_negatives(), and false_positives()
def __init__(self, classifier):
self.set_classifier(classifier)
self.reset_test_results()
# Tell the tester which classifier to use.
def set_classifier(self, classifier):
self.classifier = classifier
def reset_test_results(self):
# The number of ham and spam instances tested.
self.nham_tested = self.nspam_tested = 0
# The number of test instances correctly and incorrectly classified.
self.nham_right = 0
self.nham_wrong = 0
self.nham_unsure = 0;
self.nspam_right = 0
self.nspam_wrong = 0
self.nspam_unsure = 0;
# Lists of bad predictions.
self.ham_wrong_examples = [] # False positives: ham called spam.
self.spam_wrong_examples = [] # False negatives: spam called ham.
self.unsure_examples = [] # ham and spam in middle ground
# Train the classifier on streams of ham and spam. Updates probabilities
# before returning, and resets test results.
def train(self, hamstream=None, spamstream=None):
self.reset_test_results()
learn = self.classifier.learn
if hamstream is not None:
for example in hamstream:
learn(example, False)
if spamstream is not None:
for example in spamstream:
learn(example, True)
# Untrain the classifier on streams of ham and spam. Updates
# probabilities before returning, and resets test results.
def untrain(self, hamstream=None, spamstream=None):
self.reset_test_results()
unlearn = self.classifier.unlearn
if hamstream is not None:
for example in hamstream:
unlearn(example, False)
if spamstream is not None:
for example in spamstream:
unlearn(example, True)
# Run prediction on each sample in stream. You're swearing that stream
# is entirely composed of spam (is_spam True), or of ham (is_spam False).
# Note that mispredictions are saved, and can be retrieved later via
# false_negatives (spam mistakenly called ham) and false_positives (ham
# mistakenly called spam). For this reason, you may wish to wrap examples
# in a little class that identifies the example in a useful way, and whose
# __iter__ produces a token stream for the classifier.
#
# If specified, callback(msg, spam_probability) is called for each
# msg in the stream, after the spam probability is computed.
def predict(self, stream, is_spam, callback=None):
guess = self.classifier.spamprob
for example in stream:
prob = guess(example)
if callback:
callback(example, prob)
is_ham_guessed = prob < options["Categorization", "ham_cutoff"]
is_spam_guessed = prob >= options["Categorization", "spam_cutoff"]
if is_spam:
self.nspam_tested += 1
if is_spam_guessed:
self.nspam_right += 1
elif is_ham_guessed:
self.nspam_wrong += 1
self.spam_wrong_examples.append(example)
else:
self.nspam_unsure += 1
self.unsure_examples.append(example)
else:
self.nham_tested += 1
if is_ham_guessed:
self.nham_right += 1
elif is_spam_guessed:
self.nham_wrong += 1
self.ham_wrong_examples.append(example)
else:
self.nham_unsure += 1
self.unsure_examples.append(example)
assert (self.nham_right + self.nham_wrong + self.nham_unsure ==
self.nham_tested)
assert (self.nspam_right + self.nspam_wrong + self.nspam_unsure ==
self.nspam_tested)
def false_positive_rate(self):
"""Percentage of ham mistakenly identified as spam, in 0.0..100.0."""
return self.nham_wrong * 1e2 / (self.nham_tested or 1)
def false_negative_rate(self):
"""Percentage of spam mistakenly identified as ham, in 0.0..100.0."""
return self.nspam_wrong * 1e2 / (self.nspam_tested or 1)
def unsure_rate(self):
return ((self.nham_unsure + self.nspam_unsure) * 1e2 /
((self.nham_tested + self.nspam_tested) or 1))
def false_positives(self):
return self.ham_wrong_examples
def false_negatives(self):
return self.spam_wrong_examples
def unsures(self):
return self.unsure_examples
class _Example:
def __init__(self, name, words):
self.name = name
self.words = words
def __iter__(self):
return iter(self.words)
_easy_test = """
>>> from spambayes.classifier import Bayes
>>> from spambayes.Options import options
>>> options["Categorization", "ham_cutoff"] = options["Categorization", "spam_cutoff"] = 0.5
>>> good1 = _Example('', ['a', 'b', 'c'])
>>> good2 = _Example('', ['a', 'b'])
>>> bad1 = _Example('', ['c', 'd'])
>>> t = Test(Bayes())
>>> t.train([good1, good2], [bad1])
>>> t.predict([_Example('goodham', ['a', 'b']),
... _Example('badham', ['d']) # FP
... ], False)
>>> t.predict([_Example('goodspam', ['d']),
... _Example('badspam1', ['a']), # FN
... _Example('badspam2', ['a', 'b']), # FN
... _Example('badspam3', ['d', 'a', 'b']) # FN
... ], True)
>>> t.nham_tested
2
>>> t.nham_right, t.nham_wrong
(1, 1)
>>> t.false_positive_rate()
50.0
>>> [e.name for e in t.false_positives()]
['badham']
>>> t.nspam_tested
4
>>> t.nspam_right, t.nspam_wrong
(1, 3)
>>> t.false_negative_rate()
75.0
>>> [e.name for e in t.false_negatives()]
['badspam1', 'badspam2', 'badspam3']
>>> [e.name for e in t.unsures()]
[]
>>> t.unsure_rate()
0.0
"""
__test__ = {'easy': _easy_test}
def _test():
import doctest, Tester
doctest.testmod(Tester)
if __name__ == '__main__':
_test()
syntax highlighted by Code2HTML, v. 0.9.1