#! /usr/local/bin/python2.3 """Usage: %(program)s [-D|-d] [options] Where: -h show usage and exit -d FILE use the DBM store. A DBM file is larger than the pickle and creating it is slower, but loading it is much faster, especially for large word databases. Recommended for use with hammiefilter or any procmail-based filter. Default filename: %(DEFAULTDB)s -p FILE use the pickle store. A pickle is smaller and faster to create, but much slower to load. Recommended for use with sb_server and sb_xmlrpcserver. Default filename: %(DEFAULTDB)s -U Untrain instead of train. The interpretation of -g and -s remains the same. -f run as a filter: read a single message from stdin, add a new header, and write it to stdout. If you want to run from procmail, this is your option. -g PATH mbox or directory of known good messages (non-spam) to train on. Can be specified more than once, or use - for stdin. -s PATH mbox or directory of known spam messages to train on. Can be specified more than once, or use - for stdin. -u PATH mbox of unknown messages. A ham/spam decision is reported for each. Can be specified more than once. -r reverse the meaning of the check (report ham instead of spam). Only meaningful with the -u option. """ try: True, False except NameError: # Maintain compatibility with Python 2.2 True, False = 1, 0 def bool(val): return not not val import sys import os import getopt from spambayes.Options import options, get_pathname_option from spambayes import classifier, mboxutils, hammie, Corpus, storage Corpus.Verbose = True program = sys.argv[0] # For usage(); referenced by docstring above # Default database name # This is a bit of a hack to counter the default for # persistent_storage_file changing from ~/.hammiedb to hammie.db # This will work unless a user had hammie.db as their value for # persistent_storage_file if options["Storage", "persistent_storage_file"] == \ options.default("Storage", "persistent_storage_file"): options["Storage", "persistent_storage_file"] = \ os.path.join("~", ".hammiedb") DEFAULTDB = get_pathname_option("Storage", "persistent_storage_file") # Probability at which a message is considered spam SPAM_THRESHOLD = options["Categorization", "spam_cutoff"] HAM_THRESHOLD = options["Categorization", "ham_cutoff"] def train(h, msgs, is_spam): """Train bayes with all messages from a mailbox.""" mbox = mboxutils.getmbox(msgs) i = 0 for msg in mbox: i += 1 if i % 10 == 0: sys.stdout.write("\r%6d" % i) sys.stdout.flush() h.train(msg, is_spam) sys.stdout.write("\r%6d" % i) sys.stdout.flush() print def untrain(h, msgs, is_spam): """Untrain bayes with all messages from a mailbox.""" mbox = mboxutils.getmbox(msgs) i = 0 for msg in mbox: i += 1 if i % 10 == 0: sys.stdout.write("\r%6d" % i) sys.stdout.flush() h.untrain(msg, is_spam) sys.stdout.write("\r%6d" % i) sys.stdout.flush() print def score(h, msgs, reverse=0): """Score (judge) all messages from a mailbox.""" # XXX The reporting needs work! mbox = mboxutils.getmbox(msgs) i = 0 spams = hams = unsures = 0 for msg in mbox: i += 1 prob, clues = h.score(msg, True) if hasattr(msg, '_mh_msgno'): msgno = msg._mh_msgno else: msgno = i isspam = (prob >= SPAM_THRESHOLD) isham = (prob <= HAM_THRESHOLD) if isspam: spams += 1 if not reverse: print "%6s %4.2f %1s" % (msgno, prob, isspam and "S" or "."), print h.formatclues(clues) elif isham: hams += 1 if reverse: print "%6s %4.2f %1s" % (msgno, prob, isham and "S" or "."), print h.formatclues(clues) else: unsures += 1 print "%6s %4.2f U" % (msgno, prob), print h.formatclues(clues) return (spams, hams, unsures) def usage(code, msg=''): """Print usage message and sys.exit(code).""" if msg: print >> sys.stderr, msg print >> sys.stderr print >> sys.stderr, __doc__ % globals() sys.exit(code) def main(): """Main program; parse options and go.""" try: opts, args = getopt.getopt(sys.argv[1:], 'hd:Ufg:s:p:u:r') except getopt.error, msg: usage(2, msg) if not opts: usage(2, "No options given") pck = DEFAULTDB good = [] spam = [] unknown = [] reverse = 0 untrain_mode = 0 do_filter = False usedb = None mode = 'r' for opt, arg in opts: if opt == '-h': usage(0) elif opt == '-g': good.append(arg) mode = 'c' elif opt == '-s': spam.append(arg) mode = 'c' elif opt == "-f": do_filter = True elif opt == '-u': unknown.append(arg) elif opt == '-U': untrain_mode = 1 elif opt == '-r': reverse = 1 pck, usedb = storage.database_type(opts) if args: usage(2, "Positional arguments not allowed") if usedb == None: usage(2, "Must specify one of -d or -D") save = False h = hammie.open(pck, usedb, mode) if not untrain_mode: for g in good: print "Training ham (%s):" % g train(h, g, False) save = True for s in spam: print "Training spam (%s):" % s train(h, s, True) save = True else: for g in good: print "Untraining ham (%s):" % g untrain(h, g, False) save = True for s in spam: print "Untraining spam (%s):" % s untrain(h, s, True) save = True if save: h.store() if do_filter: msg = sys.stdin.read() filtered = h.filter(msg) sys.stdout.write(filtered) if unknown: spams = hams = unsures = 0 for u in unknown: if len(unknown) > 1: print "Scoring", u s, g, u = score(h, u, reverse) spams += s hams += g unsures += u print "Total %d spam, %d ham, %d unsure" % (spams, hams, unsures) if __name__ == "__main__": main()