#! /usr/local/bin/python2.3
"""Usage: %(program)s [-D|-d] [options]
Where:
-h
show usage and exit
-d FILE
use the DBM store. A DBM file is larger than the pickle and
creating it is slower, but loading it is much faster,
especially for large word databases. Recommended for use with
hammiefilter or any procmail-based filter.
Default filename: %(DEFAULTDB)s
-p FILE
use the pickle store. A pickle is smaller and faster to create,
but much slower to load. Recommended for use with sb_server and
sb_xmlrpcserver.
Default filename: %(DEFAULTDB)s
-U
Untrain instead of train. The interpretation of -g and -s remains
the same.
-f
run as a filter: read a single message from stdin, add a new
header, and write it to stdout. If you want to run from
procmail, this is your option.
-g PATH
mbox or directory of known good messages (non-spam) to train on.
Can be specified more than once, or use - for stdin.
-s PATH
mbox or directory of known spam messages to train on.
Can be specified more than once, or use - for stdin.
-u PATH
mbox of unknown messages. A ham/spam decision is reported for each.
Can be specified more than once.
-r
reverse the meaning of the check (report ham instead of spam).
Only meaningful with the -u option.
"""
try:
True, False
except NameError:
# Maintain compatibility with Python 2.2
True, False = 1, 0
def bool(val):
return not not val
import sys
import os
import getopt
from spambayes.Options import options, get_pathname_option
from spambayes import classifier, mboxutils, hammie, Corpus, storage
Corpus.Verbose = True
program = sys.argv[0] # For usage(); referenced by docstring above
# Default database name
# This is a bit of a hack to counter the default for
# persistent_storage_file changing from ~/.hammiedb to hammie.db
# This will work unless a user had hammie.db as their value for
# persistent_storage_file
if options["Storage", "persistent_storage_file"] == \
options.default("Storage", "persistent_storage_file"):
options["Storage", "persistent_storage_file"] = \
os.path.join("~", ".hammiedb")
DEFAULTDB = get_pathname_option("Storage", "persistent_storage_file")
# Probability at which a message is considered spam
SPAM_THRESHOLD = options["Categorization", "spam_cutoff"]
HAM_THRESHOLD = options["Categorization", "ham_cutoff"]
def train(h, msgs, is_spam):
"""Train bayes with all messages from a mailbox."""
mbox = mboxutils.getmbox(msgs)
i = 0
for msg in mbox:
i += 1
if i % 10 == 0:
sys.stdout.write("\r%6d" % i)
sys.stdout.flush()
h.train(msg, is_spam)
sys.stdout.write("\r%6d" % i)
sys.stdout.flush()
print
def untrain(h, msgs, is_spam):
"""Untrain bayes with all messages from a mailbox."""
mbox = mboxutils.getmbox(msgs)
i = 0
for msg in mbox:
i += 1
if i % 10 == 0:
sys.stdout.write("\r%6d" % i)
sys.stdout.flush()
h.untrain(msg, is_spam)
sys.stdout.write("\r%6d" % i)
sys.stdout.flush()
print
def score(h, msgs, reverse=0):
"""Score (judge) all messages from a mailbox."""
# XXX The reporting needs work!
mbox = mboxutils.getmbox(msgs)
i = 0
spams = hams = unsures = 0
for msg in mbox:
i += 1
prob, clues = h.score(msg, True)
if hasattr(msg, '_mh_msgno'):
msgno = msg._mh_msgno
else:
msgno = i
isspam = (prob >= SPAM_THRESHOLD)
isham = (prob <= HAM_THRESHOLD)
if isspam:
spams += 1
if not reverse:
print "%6s %4.2f %1s" % (msgno, prob, isspam and "S" or "."),
print h.formatclues(clues)
elif isham:
hams += 1
if reverse:
print "%6s %4.2f %1s" % (msgno, prob, isham and "S" or "."),
print h.formatclues(clues)
else:
unsures += 1
print "%6s %4.2f U" % (msgno, prob),
print h.formatclues(clues)
return (spams, hams, unsures)
def usage(code, msg=''):
"""Print usage message and sys.exit(code)."""
if msg:
print >> sys.stderr, msg
print >> sys.stderr
print >> sys.stderr, __doc__ % globals()
sys.exit(code)
def main():
"""Main program; parse options and go."""
try:
opts, args = getopt.getopt(sys.argv[1:], 'hd:Ufg:s:p:u:r')
except getopt.error, msg:
usage(2, msg)
if not opts:
usage(2, "No options given")
pck = DEFAULTDB
good = []
spam = []
unknown = []
reverse = 0
untrain_mode = 0
do_filter = False
usedb = None
mode = 'r'
for opt, arg in opts:
if opt == '-h':
usage(0)
elif opt == '-g':
good.append(arg)
mode = 'c'
elif opt == '-s':
spam.append(arg)
mode = 'c'
elif opt == "-f":
do_filter = True
elif opt == '-u':
unknown.append(arg)
elif opt == '-U':
untrain_mode = 1
elif opt == '-r':
reverse = 1
pck, usedb = storage.database_type(opts)
if args:
usage(2, "Positional arguments not allowed")
if usedb == None:
usage(2, "Must specify one of -d or -D")
save = False
h = hammie.open(pck, usedb, mode)
if not untrain_mode:
for g in good:
print "Training ham (%s):" % g
train(h, g, False)
save = True
for s in spam:
print "Training spam (%s):" % s
train(h, s, True)
save = True
else:
for g in good:
print "Untraining ham (%s):" % g
untrain(h, g, False)
save = True
for s in spam:
print "Untraining spam (%s):" % s
untrain(h, s, True)
save = True
if save:
h.store()
if do_filter:
msg = sys.stdin.read()
filtered = h.filter(msg)
sys.stdout.write(filtered)
if unknown:
spams = hams = unsures = 0
for u in unknown:
if len(unknown) > 1:
print "Scoring", u
s, g, u = score(h, u, reverse)
spams += s
hams += g
unsures += u
print "Total %d spam, %d ham, %d unsure" % (spams, hams, unsures)
if __name__ == "__main__":
main()
syntax highlighted by Code2HTML, v. 0.9.1