# Test sb_dbexpimp script. import os import sys import unittest from spambayes.tokenizer import tokenize from spambayes.storage import open_storage from spambayes.storage import PickledClassifier, DBDictClassifier import sb_test_support sb_test_support.fix_sys_path() import sb_dbexpimp # We borrow the test messages that test_sb_server uses. # I doubt it really makes much difference, but if we wanted more than # one message of each type (the tests should all handle this ok) then # Richie's hammer.py script has code for generating any number of # randomly composed email messages. from test_sb_server import good1, spam1 try: __file__ except NameError: # Python 2.2 __file__ = sys.argv[0] TEMP_PICKLE_NAME = os.path.join(os.path.dirname(__file__), "temp.pik") TEMP_CSV_NAME = os.path.join(os.path.dirname(__file__), "temp.csv") TEMP_DBM_NAME = os.path.join(os.path.dirname(__file__), "temp.dbm") # The chances of anyone having files with these names in the test # directory is minute, but we don't want to wipe anything, so make # sure that they don't already exist. Our tearDown code gets rid # of our copies (whether the tests pass or fail) so they shouldn't # be ours. for fn in [TEMP_PICKLE_NAME, TEMP_CSV_NAME, TEMP_DBM_NAME]: if os.path.exists(fn): print fn, "already exists. Please remove this file before " \ "running these tests (a file by that name will be " \ "created and destroyed as part of the tests)." sys.exit(1) class dbexpimpTest(unittest.TestCase): def tearDown(self): try: os.remove(TEMP_PICKLE_NAME) except OSError: pass try: os.remove(TEMP_CSV_NAME) except OSError: pass try: os.remove(TEMP_DBM_NAME) except OSError: pass def test_csv_module_import(self): """Check that we don't import the old object craft csv module.""" self.assert_(hasattr(sb_dbexpimp.csv, "reader")) def test_pickle_export(self): # Create a pickled classifier to export. bayes = PickledClassifier(TEMP_PICKLE_NAME) # Stuff some messages in it so it's not empty. bayes.learn(tokenize(spam1), True) bayes.learn(tokenize(good1), False) # Save. bayes.store() # Export. sb_dbexpimp.runExport(TEMP_PICKLE_NAME, "pickle", TEMP_CSV_NAME) # Verify that the CSV holds all the original data (and, by using # the CSV module to open it, that it is valid CSV data). fp = open(TEMP_CSV_NAME, "rb") reader = sb_dbexpimp.csv.reader(fp) (nham, nspam) = reader.next() self.assertEqual(int(nham), bayes.nham) self.assertEqual(int(nspam), bayes.nspam) for (word, hamcount, spamcount) in reader: word = sb_dbexpimp.uunquote(word) self.assert_(word in bayes._wordinfokeys()) wi = bayes._wordinfoget(word) self.assertEqual(int(hamcount), wi.hamcount) self.assertEqual(int(spamcount), wi.spamcount) def test_dbm_export(self): # Create a dbm classifier to export. bayes = DBDictClassifier(TEMP_DBM_NAME) # Stuff some messages in it so it's not empty. bayes.learn(tokenize(spam1), True) bayes.learn(tokenize(good1), False) # Save & Close. bayes.store() bayes.close() # Export. sb_dbexpimp.runExport(TEMP_DBM_NAME, "dbm", TEMP_CSV_NAME) # Reopen the original. bayes = open_storage(TEMP_DBM_NAME, "dbm") # Verify that the CSV holds all the original data (and, by using # the CSV module to open it, that it is valid CSV data). fp = open(TEMP_CSV_NAME, "rb") reader = sb_dbexpimp.csv.reader(fp) (nham, nspam) = reader.next() self.assertEqual(int(nham), bayes.nham) self.assertEqual(int(nspam), bayes.nspam) for (word, hamcount, spamcount) in reader: word = sb_dbexpimp.uunquote(word) self.assert_(word in bayes._wordinfokeys()) wi = bayes._wordinfoget(word) self.assertEqual(int(hamcount), wi.hamcount) self.assertEqual(int(spamcount), wi.spamcount) def test_import_to_pickle(self): # Create a CSV file to import. temp = open(TEMP_CSV_NAME, "wb") temp.write("3,4\n") csv_data = {"this":(2,1), "is":(0,1), "a":(3,4), 'test':(1,1), "of":(1,0), "the":(1,2), "import":(3,1)} for word, (ham, spam) in csv_data.items(): temp.write("%s,%s,%s\n" % (word, ham, spam)) temp.close() sb_dbexpimp.runImport(TEMP_PICKLE_NAME, "pickle", True, TEMP_CSV_NAME) # Open the converted file and verify that it has all the data from # the CSV file (and by opening it, that it is a valid pickle). bayes = open_storage(TEMP_PICKLE_NAME, "pickle") self.assertEqual(bayes.nham, 3) self.assertEqual(bayes.nspam, 4) for word, (ham, spam) in csv_data.items(): word = sb_dbexpimp.uquote(word) self.assert_(word in bayes._wordinfokeys()) wi = bayes._wordinfoget(word) self.assertEqual(wi.hamcount, ham) self.assertEqual(wi.spamcount, spam) def test_import_to_dbm(self): # Create a CSV file to import. temp = open(TEMP_CSV_NAME, "wb") temp.write("3,4\n") csv_data = {"this":(2,1), "is":(0,1), "a":(3,4), 'test':(1,1), "of":(1,0), "the":(1,2), "import":(3,1)} for word, (ham, spam) in csv_data.items(): temp.write("%s,%s,%s\n" % (word, ham, spam)) temp.close() sb_dbexpimp.runImport(TEMP_DBM_NAME, "dbm", True, TEMP_CSV_NAME) # Open the converted file and verify that it has all the data from # the CSV file (and by opening it, that it is a valid dbm file). bayes = open_storage(TEMP_DBM_NAME, "dbm") self.assertEqual(bayes.nham, 3) self.assertEqual(bayes.nspam, 4) for word, (ham, spam) in csv_data.items(): word = sb_dbexpimp.uquote(word) self.assert_(word in bayes._wordinfokeys()) wi = bayes._wordinfoget(word) self.assertEqual(wi.hamcount, ham) self.assertEqual(wi.spamcount, spam) def test_merge_to_pickle(self): # Create a pickled classifier to merge with. bayes = PickledClassifier(TEMP_PICKLE_NAME) # Stuff some messages in it so it's not empty. bayes.learn(tokenize(spam1), True) bayes.learn(tokenize(good1), False) # Save. bayes.store() # Create a CSV file to import. nham, nspam = 3,4 temp = open(TEMP_CSV_NAME, "wb") temp.write("%d,%d\n" % (nham, nspam)) csv_data = {"this":(2,1), "is":(0,1), "a":(3,4), 'test':(1,1), "of":(1,0), "the":(1,2), "import":(3,1)} for word, (ham, spam) in csv_data.items(): temp.write("%s,%s,%s\n" % (word, ham, spam)) temp.close() sb_dbexpimp.runImport(TEMP_PICKLE_NAME, "pickle", False, TEMP_CSV_NAME) # Open the converted file and verify that it has all the data from # the CSV file (and by opening it, that it is a valid pickle), # and the data from the original pickle. bayes2 = open_storage(TEMP_PICKLE_NAME, "pickle") self.assertEqual(bayes2.nham, nham + bayes.nham) self.assertEqual(bayes2.nspam, nspam + bayes.nspam) words = bayes._wordinfokeys() words.extend(csv_data.keys()) for word in words: word = sb_dbexpimp.uquote(word) self.assert_(word in bayes2._wordinfokeys()) h, s = csv_data.get(word, (0,0)) wi = bayes._wordinfoget(word) if wi: h += wi.hamcount s += wi.spamcount wi2 = bayes2._wordinfoget(word) self.assertEqual(h, wi2.hamcount) self.assertEqual(s, wi2.spamcount) def test_merge_to_dbm(self): # Create a dbm classifier to merge with. bayes = DBDictClassifier(TEMP_DBM_NAME) # Stuff some messages in it so it's not empty. bayes.learn(tokenize(spam1), True) bayes.learn(tokenize(good1), False) # Save data to check against. original_nham = bayes.nham original_nspam = bayes.nspam original_data = {} for key in bayes._wordinfokeys(): original_data[key] = bayes._wordinfoget(key) # Save & Close. bayes.store() bayes.close() # Create a CSV file to import. nham, nspam = 3,4 temp = open(TEMP_CSV_NAME, "wb") temp.write("%d,%d\n" % (nham, nspam)) csv_data = {"this":(2,1), "is":(0,1), "a":(3,4), 'test':(1,1), "of":(1,0), "the":(1,2), "import":(3,1)} for word, (ham, spam) in csv_data.items(): temp.write("%s,%s,%s\n" % (word, ham, spam)) temp.close() sb_dbexpimp.runImport(TEMP_DBM_NAME, "dbm", False, TEMP_CSV_NAME) # Open the converted file and verify that it has all the data from # the CSV file (and by opening it, that it is a valid dbm file), # and the data from the original dbm database. bayes2 = open_storage(TEMP_DBM_NAME, "dbm") self.assertEqual(bayes2.nham, nham + original_nham) self.assertEqual(bayes2.nspam, nspam + original_nspam) words = original_data.keys()[:] words.extend(csv_data.keys()) for word in words: word = sb_dbexpimp.uquote(word) self.assert_(word in bayes2._wordinfokeys()) h, s = csv_data.get(word, (0,0)) wi = original_data.get(word, None) if wi: h += wi.hamcount s += wi.spamcount wi2 = bayes2._wordinfoget(word) self.assertEqual(h, wi2.hamcount) self.assertEqual(s, wi2.spamcount) def suite(): suite = unittest.TestSuite() for cls in (dbexpimpTest, ): suite.addTest(unittest.makeSuite(cls)) return suite if __name__=='__main__': sb_test_support.unittest_main(argv=sys.argv + ['suite'])