# Test sb_dbexpimp script.
import os
import sys
import unittest
from spambayes.tokenizer import tokenize
from spambayes.storage import open_storage
from spambayes.storage import PickledClassifier, DBDictClassifier
import sb_test_support
sb_test_support.fix_sys_path()
import sb_dbexpimp
# We borrow the test messages that test_sb_server uses.
# I doubt it really makes much difference, but if we wanted more than
# one message of each type (the tests should all handle this ok) then
# Richie's hammer.py script has code for generating any number of
# randomly composed email messages.
from test_sb_server import good1, spam1
try:
__file__
except NameError:
# Python 2.2
__file__ = sys.argv[0]
TEMP_PICKLE_NAME = os.path.join(os.path.dirname(__file__), "temp.pik")
TEMP_CSV_NAME = os.path.join(os.path.dirname(__file__), "temp.csv")
TEMP_DBM_NAME = os.path.join(os.path.dirname(__file__), "temp.dbm")
# The chances of anyone having files with these names in the test
# directory is minute, but we don't want to wipe anything, so make
# sure that they don't already exist. Our tearDown code gets rid
# of our copies (whether the tests pass or fail) so they shouldn't
# be ours.
for fn in [TEMP_PICKLE_NAME, TEMP_CSV_NAME, TEMP_DBM_NAME]:
if os.path.exists(fn):
print fn, "already exists. Please remove this file before " \
"running these tests (a file by that name will be " \
"created and destroyed as part of the tests)."
sys.exit(1)
class dbexpimpTest(unittest.TestCase):
def tearDown(self):
try:
os.remove(TEMP_PICKLE_NAME)
except OSError:
pass
try:
os.remove(TEMP_CSV_NAME)
except OSError:
pass
try:
os.remove(TEMP_DBM_NAME)
except OSError:
pass
def test_csv_module_import(self):
"""Check that we don't import the old object craft csv module."""
self.assert_(hasattr(sb_dbexpimp.csv, "reader"))
def test_pickle_export(self):
# Create a pickled classifier to export.
bayes = PickledClassifier(TEMP_PICKLE_NAME)
# Stuff some messages in it so it's not empty.
bayes.learn(tokenize(spam1), True)
bayes.learn(tokenize(good1), False)
# Save.
bayes.store()
# Export.
sb_dbexpimp.runExport(TEMP_PICKLE_NAME, "pickle", TEMP_CSV_NAME)
# Verify that the CSV holds all the original data (and, by using
# the CSV module to open it, that it is valid CSV data).
fp = open(TEMP_CSV_NAME, "rb")
reader = sb_dbexpimp.csv.reader(fp)
(nham, nspam) = reader.next()
self.assertEqual(int(nham), bayes.nham)
self.assertEqual(int(nspam), bayes.nspam)
for (word, hamcount, spamcount) in reader:
word = sb_dbexpimp.uunquote(word)
self.assert_(word in bayes._wordinfokeys())
wi = bayes._wordinfoget(word)
self.assertEqual(int(hamcount), wi.hamcount)
self.assertEqual(int(spamcount), wi.spamcount)
def test_dbm_export(self):
# Create a dbm classifier to export.
bayes = DBDictClassifier(TEMP_DBM_NAME)
# Stuff some messages in it so it's not empty.
bayes.learn(tokenize(spam1), True)
bayes.learn(tokenize(good1), False)
# Save & Close.
bayes.store()
bayes.close()
# Export.
sb_dbexpimp.runExport(TEMP_DBM_NAME, "dbm", TEMP_CSV_NAME)
# Reopen the original.
bayes = open_storage(TEMP_DBM_NAME, "dbm")
# Verify that the CSV holds all the original data (and, by using
# the CSV module to open it, that it is valid CSV data).
fp = open(TEMP_CSV_NAME, "rb")
reader = sb_dbexpimp.csv.reader(fp)
(nham, nspam) = reader.next()
self.assertEqual(int(nham), bayes.nham)
self.assertEqual(int(nspam), bayes.nspam)
for (word, hamcount, spamcount) in reader:
word = sb_dbexpimp.uunquote(word)
self.assert_(word in bayes._wordinfokeys())
wi = bayes._wordinfoget(word)
self.assertEqual(int(hamcount), wi.hamcount)
self.assertEqual(int(spamcount), wi.spamcount)
def test_import_to_pickle(self):
# Create a CSV file to import.
temp = open(TEMP_CSV_NAME, "wb")
temp.write("3,4\n")
csv_data = {"this":(2,1), "is":(0,1), "a":(3,4), 'test':(1,1),
"of":(1,0), "the":(1,2), "import":(3,1)}
for word, (ham, spam) in csv_data.items():
temp.write("%s,%s,%s\n" % (word, ham, spam))
temp.close()
sb_dbexpimp.runImport(TEMP_PICKLE_NAME, "pickle", True,
TEMP_CSV_NAME)
# Open the converted file and verify that it has all the data from
# the CSV file (and by opening it, that it is a valid pickle).
bayes = open_storage(TEMP_PICKLE_NAME, "pickle")
self.assertEqual(bayes.nham, 3)
self.assertEqual(bayes.nspam, 4)
for word, (ham, spam) in csv_data.items():
word = sb_dbexpimp.uquote(word)
self.assert_(word in bayes._wordinfokeys())
wi = bayes._wordinfoget(word)
self.assertEqual(wi.hamcount, ham)
self.assertEqual(wi.spamcount, spam)
def test_import_to_dbm(self):
# Create a CSV file to import.
temp = open(TEMP_CSV_NAME, "wb")
temp.write("3,4\n")
csv_data = {"this":(2,1), "is":(0,1), "a":(3,4), 'test':(1,1),
"of":(1,0), "the":(1,2), "import":(3,1)}
for word, (ham, spam) in csv_data.items():
temp.write("%s,%s,%s\n" % (word, ham, spam))
temp.close()
sb_dbexpimp.runImport(TEMP_DBM_NAME, "dbm", True, TEMP_CSV_NAME)
# Open the converted file and verify that it has all the data from
# the CSV file (and by opening it, that it is a valid dbm file).
bayes = open_storage(TEMP_DBM_NAME, "dbm")
self.assertEqual(bayes.nham, 3)
self.assertEqual(bayes.nspam, 4)
for word, (ham, spam) in csv_data.items():
word = sb_dbexpimp.uquote(word)
self.assert_(word in bayes._wordinfokeys())
wi = bayes._wordinfoget(word)
self.assertEqual(wi.hamcount, ham)
self.assertEqual(wi.spamcount, spam)
def test_merge_to_pickle(self):
# Create a pickled classifier to merge with.
bayes = PickledClassifier(TEMP_PICKLE_NAME)
# Stuff some messages in it so it's not empty.
bayes.learn(tokenize(spam1), True)
bayes.learn(tokenize(good1), False)
# Save.
bayes.store()
# Create a CSV file to import.
nham, nspam = 3,4
temp = open(TEMP_CSV_NAME, "wb")
temp.write("%d,%d\n" % (nham, nspam))
csv_data = {"this":(2,1), "is":(0,1), "a":(3,4), 'test':(1,1),
"of":(1,0), "the":(1,2), "import":(3,1)}
for word, (ham, spam) in csv_data.items():
temp.write("%s,%s,%s\n" % (word, ham, spam))
temp.close()
sb_dbexpimp.runImport(TEMP_PICKLE_NAME, "pickle", False,
TEMP_CSV_NAME)
# Open the converted file and verify that it has all the data from
# the CSV file (and by opening it, that it is a valid pickle),
# and the data from the original pickle.
bayes2 = open_storage(TEMP_PICKLE_NAME, "pickle")
self.assertEqual(bayes2.nham, nham + bayes.nham)
self.assertEqual(bayes2.nspam, nspam + bayes.nspam)
words = bayes._wordinfokeys()
words.extend(csv_data.keys())
for word in words:
word = sb_dbexpimp.uquote(word)
self.assert_(word in bayes2._wordinfokeys())
h, s = csv_data.get(word, (0,0))
wi = bayes._wordinfoget(word)
if wi:
h += wi.hamcount
s += wi.spamcount
wi2 = bayes2._wordinfoget(word)
self.assertEqual(h, wi2.hamcount)
self.assertEqual(s, wi2.spamcount)
def test_merge_to_dbm(self):
# Create a dbm classifier to merge with.
bayes = DBDictClassifier(TEMP_DBM_NAME)
# Stuff some messages in it so it's not empty.
bayes.learn(tokenize(spam1), True)
bayes.learn(tokenize(good1), False)
# Save data to check against.
original_nham = bayes.nham
original_nspam = bayes.nspam
original_data = {}
for key in bayes._wordinfokeys():
original_data[key] = bayes._wordinfoget(key)
# Save & Close.
bayes.store()
bayes.close()
# Create a CSV file to import.
nham, nspam = 3,4
temp = open(TEMP_CSV_NAME, "wb")
temp.write("%d,%d\n" % (nham, nspam))
csv_data = {"this":(2,1), "is":(0,1), "a":(3,4), 'test':(1,1),
"of":(1,0), "the":(1,2), "import":(3,1)}
for word, (ham, spam) in csv_data.items():
temp.write("%s,%s,%s\n" % (word, ham, spam))
temp.close()
sb_dbexpimp.runImport(TEMP_DBM_NAME, "dbm", False, TEMP_CSV_NAME)
# Open the converted file and verify that it has all the data from
# the CSV file (and by opening it, that it is a valid dbm file),
# and the data from the original dbm database.
bayes2 = open_storage(TEMP_DBM_NAME, "dbm")
self.assertEqual(bayes2.nham, nham + original_nham)
self.assertEqual(bayes2.nspam, nspam + original_nspam)
words = original_data.keys()[:]
words.extend(csv_data.keys())
for word in words:
word = sb_dbexpimp.uquote(word)
self.assert_(word in bayes2._wordinfokeys())
h, s = csv_data.get(word, (0,0))
wi = original_data.get(word, None)
if wi:
h += wi.hamcount
s += wi.spamcount
wi2 = bayes2._wordinfoget(word)
self.assertEqual(h, wi2.hamcount)
self.assertEqual(s, wi2.spamcount)
def suite():
suite = unittest.TestSuite()
for cls in (dbexpimpTest,
):
suite.addTest(unittest.makeSuite(cls))
return suite
if __name__=='__main__':
sb_test_support.unittest_main(argv=sys.argv + ['suite'])
syntax highlighted by Code2HTML, v. 0.9.1