#! /usr/local/bin/python2.3 # A test driver using "the standard" test directory structure. # This simulates a user that gets E-mail, and only trains on fp, # fn and unsure messages. It starts by training on the first 30 # messages, and from that point on well classified messages will # not be used for training. This can be used to see what the performance # of the scoring algorithm is under such conditions. Questions are: # * How does the size of the database behave over time? # * Does the classification get better over time? # * Are there other combinations of parameters for the classifier # that make this better behaved than the default values? """Usage: %(program)s [options] -n nsets Where: -h Show usage and exit. -n int Number of Set directories (Data/Spam/Set1, ... and Data/Ham/Set1, ...). This is required. -d decider Name of the decider. One of %(decisionkeys)s -m min Minimal number of messages to train on before involving the decider. In addition, an attempt is made to merge bayescustomize.ini into the options. If that exists, it can be used to change the settings in Options.options. """ from __future__ import generators import sys,os from spambayes.Options import options, get_pathname_option from spambayes import hammie, msgs, CostCounter program = sys.argv[0] debug = 0 def usage(code, msg=''): """Print usage message and sys.exit(code).""" if msg: print >> sys.stderr, msg print >> sys.stderr print >> sys.stderr, __doc__ % globals() sys.exit(code) DONT_TRAIN = None TRAIN_AS_HAM = 1 TRAIN_AS_SPAM = 2 class TrainDecision: def __call__(self,scr,is_spam): if is_spam: return self.spamtrain(scr) else: return self.hamtrain(scr) class UnsureAndFalses(TrainDecision): def spamtrain(self,scr): if scr < options["Categorization", "spam_cutoff"]: return TRAIN_AS_SPAM def hamtrain(self,scr): if scr > options["Categorization", "ham_cutoff"]: return TRAIN_AS_HAM class UnsureOnly(TrainDecision): def spamtrain(self,scr): if options["Categorization", "ham_cutoff"] < scr < \ options["Categorization", "spam_cutoff"]: return TRAIN_AS_SPAM def hamtrain(self,scr): if options["Categorization", "ham_cutoff"] < scr < \ options["Categorization", "spam_cutoff"]: return TRAIN_AS_HAM class All(TrainDecision): def spamtrain(self,scr): return TRAIN_AS_SPAM def hamtrain(self,scr): return TRAIN_AS_HAM class AllBut0and100(TrainDecision): def spamtrain(self,scr): if scr < 0.995: return TRAIN_AS_SPAM def hamtrain(self,scr): if scr > 0.005: return TRAIN_AS_HAM class OwnDecision(TrainDecision): def hamtrain(self,scr): if scr < options["Categorization", "ham_cutoff"]: return TRAIN_AS_HAM elif scr > options["Categorization", "spam_cutoff"]: return TRAIN_AS_SPAM spamtrain = hamtrain class OwnDecisionFNCorrection(OwnDecision): def spamtrain(self,scr): return TRAIN_AS_SPAM decisions={'all': All, 'allbut0and100': AllBut0and100, 'unsureonly': UnsureOnly, 'unsureandfalses': UnsureAndFalses, 'owndecision': OwnDecision, 'owndecision+fn': OwnDecisionFNCorrection, } decisionkeys=decisions.keys() decisionkeys.sort() class FirstN: def __init__(self,n,client): self.client = client self.x = 0 self.n = n def __call__(self,scr,is_spam): self.x += 1 if self.tooearly(): if is_spam: return TRAIN_AS_SPAM else: return TRAIN_AS_HAM else: return self.client(scr,is_spam) def tooearly(self): return self.x < self.n class Updater: def __init__(self,d=None): self.setd(d) def setd(self,d): self.d=d def drive(nsets,decision): print options.display() spamdirs = [get_pathname_option("TestDriver", "spam_directories") % \ i for i in range(1, nsets+1)] hamdirs = [get_pathname_option("TestDriver", "ham_directories") % \ i for i in range(1, nsets+1)] spamfns = [(x,y,1) for x in spamdirs for y in os.listdir(x)] hamfns = [(x,y,0) for x in hamdirs for y in os.listdir(x)] nham = len(hamfns) nspam = len(spamfns) cc = CostCounter.nodelay() allfns = {} for fn in spamfns+hamfns: allfns[fn] = None d = hammie.open('weaktest.db', False) hamtrain = 0 spamtrain = 0 n = 0 for dir,name, is_spam in allfns.iterkeys(): n += 1 m=msgs.Msg(dir, name).guts if debug > 1: print "trained:%dH+%dS"%(hamtrain,spamtrain) scr=d.score(m) if debug > 1: print "score:%.3f"%scr if not decision.tooearly(): if is_spam: if debug > 0: print "Spam with score %.2f"%scr cc.spam(scr) else: if debug > 0: print "Ham with score %.2f"%scr cc.ham(scr) de = decision(scr,is_spam) if de == TRAIN_AS_SPAM: d.train_spam(m) spamtrain += 1 elif de == TRAIN_AS_HAM: d.train_ham(m) hamtrain += 1 if n % 100 == 0: print "%5d trained:%dH+%dS wrds:%d"%( n, hamtrain, spamtrain, len(d.bayes.wordinfo)) print cc print "="*70 print "%5d trained:%dH+%dS wrds:%d"%( n, hamtrain, spamtrain, len(d.bayes.wordinfo)) print cc def main(): global debug import getopt try: opts, args = getopt.getopt(sys.argv[1:], 'vd:hn:m:') except getopt.error, msg: usage(1, msg) nsets = None decision = decisions['unsureonly'] m = 10 for opt, arg in opts: if opt == '-h': usage(0) elif opt == '-n': nsets = int(arg) elif opt == '-v': debug += 1 elif opt == '-m': m = int(arg) elif opt == '-d': if not decisions.has_key(arg): usage(1,'Unknown decisionmaker') decision = decisions[arg] if args: usage(1, "Positional arguments not supported") if nsets is None: usage(1, "-n is required") drive(nsets,decision=FirstN(m,decision())) if __name__ == "__main__": main()